Электронная почта в Интернете (WinWord, RTF) - (курсовая)

Электронная почта в Интернете (WinWord, RTF) - (курсовая)

Дата добавления: март 2006г.

    ВВЕДЕНИЕ

В сознании большинства пользователей глобальной компьютерной сети Internet сама эта сеть ассоциируется с тремя основными информационными технологиями: * электронная почта (e-mail);

    * файловые архивы FTP;
    * World Wide Web.

Каждая из этих технологий направлена на решение одной из множества задач информационного обслуживания пользователей сети. Электронная почта - это основное средство коммуникаций Internet. Сеть Internet развивалась в первые свои годы как государственная. Это значит, что главным ее назначением был свободный обмен информацией. Доступность Internet из высших учебных заведений только способствовала этой тенденции. Электронная почта во многом похожа на обычную почту. С ее помощью письмо - текст, снабженный стандартным заголовком (конвертом) - доставляется по указанному адресу, который определяет местонахождение сервера и имя адресата, который имеет почтовый ящик на этом сервере, с тем, чтобы адресат мог его достать и прочесть в удобное время. Электронная почта оказалась во многом удобнее обычной, "бумажной". Не говоря уже о том, что Вам не приходится вставать из-за компьютера и идти до почтового ящика, чтобы получить или отправить письмо.

    1 ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
    1. 1 Базовая модель OSI (Open System Interconnection)

Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообщений. Показанные ниже стадии необходимы, когда сообщение передается от отправителя к получателю. Для того чтобы привести в движение процесс передачи данных, использовались машины с одинаковым кодированием данных и связанные одна с другой. Для единого представления данных в линиях связи, по которым передается информация, сформирована Международная организация по стандартизации (ISO – International Standards Organization). ISO предназначена для разработки модели международного коммуникационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного пояснения ниже представлены семь ее уровней. Международная организация по стандартизации (ISO) разработала базовую модель взаимодействия открытых систем (Open Systems Interconnection (OSI)). Эта модель является международным стандартом для передачи данных . Модель содержит семь отдельных уровней:

Уровень 1: физический - битовые протоколы передачи информации; Уровень 2: канальный - формирование кадров, управление доступом к среде; Уровень 3: сетевой - маршрутизация, управление потоками данных; Уровень 4: транспортный - обеспечение взаимодействия удаленных процессов; Уровень 5: сеансовый - поддержка диалога между удаленными процессами; Уровень 6: представительский - интерпретация передаваемых данных; Уровень 7: прикладной - пользовательское управление данными.

Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль, в том числе и транспортной среде. Благодаря этому, общая задача передачи данных расчленяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного уровня с выше- и нижерасположенным называют протоколом. Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей. С учетом вышеизложенного можно вывести следующую уровневую модель с административными функциями, выполняющимися в пользовательском прикладном уровне. Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень. На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень. Уровень 1. Физический

На физическом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней эксплуатационная готовность являются основной функцией 1-го уровня. Уровень 2. Канальный

Канальный уровень формирует из данных, передаваемых 1-м уровнем, так называемых "кадров", последовательности кадров. На этом уровне осуществляется управление доступом к передающей среде, используемой несколькими ЭВМ, синхронизация, обнаружение и исправление ошибок. Уровень 3. Сетевой

Сетевой уровень устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрутизации, которые требуют наличия сетевого адреса в пакете. Сетевой уровень должен также обеспечивать обработку ошибок, мультиплексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х. 25 МККТТ (для сетей общего пользования с коммутацией пакетов). Уровень 4. Транспортный

Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими процессами. Качество транспортировки, безошибочность передачи, независимость вычислительных сетей, сервис транспортировки из конца в конец, минимизация затрат и адресация связи гарантируют непрерывную и безошибочную передачу данных. Уровень 5. Сеансовый

Сеансовый уровень координирует прием, передачу и выдачу одного сеанса связи. Для координации необходимы контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Уровень 6. Представительский

Уровень представления данных предназначен для интерпретации данных, а также подготовки данных для пользовательского прикладного уровня. На этом уровне происходит преобразование данных из кадров, используемых для передачи данных в экранный формат или формат для печатающих устройств конечной системы. Уровень 7. Прикладной.

В прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское прикладное программное обеспечение. Для передачи информации по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний: "0" и "1"). Передаваемые алфавитно-цифровые знаки представляются с помощью битовых комбинаций. Битовые комбинации содержат 4-, 5-, 6-, 7- или 8-битовые коды. Количество представленных знаков в коде зависит от количества битов: код из четырех битов может представить максимум 16 значений, 5-битовый код - 32 значения, 6-битовый код - 64 значения, 7-битовый - 128 значений и 8-битовый код - 256 алфавитно-цифровых знаков. При передаче информации между одинаковыми вычислительными системами и различающимися типами компьютеров применяют следующие коды: 1) На международном уровне передача символьной информации осуществляется с помощью 7-битового кодирования, позволяющего закодировать заглавные и строчные буквы английского алфавита, а также некоторые спецсимволы. 2) Национальные и специальные знаки с помощью 7-битового кода представить нельзя. Для представления национальных знаков применяют наиболее употребимый 8-битовый код. Для правильной и, следовательно, полной и безошибочной передачи данных необходимо придерживаться согласованных и установленных правил. Все они оговорены в протоколе передачи данных. Протокол передачи данных требует следующей информации:

    • Синхронизация
    • Инициализация
    • Блокирование
    • Адресация
    • Обнаружение ошибок
    • Нумерация блоков
    • Управление потоком данных
    • Методы восстановления
    • Разрешение доступа
    1. 2 Сетевые протоколы
    1. 2. 1 NetBEUI

NetBIOS Extended User Interface – расширенный пользовательский интерфейс NetBIOS Протокол NetBEUI является наиболее быстрым, однако имеет ряд ограничений. В частности, он не поддерживает маршрутизацию, однако позволяет использовать мосты. Кроме того, он переполняет сеть широковещательными сообщениями, которые могут задействовать значительную часть ее пропускной способности. И наконец, его отличает слабая производительность в глобальных сетях. Все же его можно включать в состав системы по следующим причинам. * Он является наиболее эффективным протоколом для использования в локальной подсети * Он обладает хорошими возможностями коррекции ошибок

    * Он является полностью самонастраивающимся

* Он обеспечивает совместимость с устаревшими платформами, к которым относятся Lan Manager и реализация Windows 3. 11 для рабочих групп с поддержкой удаленного доступа * Он позволяет изменять используемый протокол в случае отказа какого-либо другого из установленных протоколов

    1. 2. 2 IPX/SPX

Протокол IPX/SPX хорошо использовать для малых и средних сетей, поскольку он обеспечивает поддержку маршрутизации. Это позволяет производить физическое разбиение сети на несколько сегментов с сохранением возможности работы с одним логическим сегментом. Оборотная сторона IPX/SPX состоит в том, что он также периодически рассылает широковещательные сообщения, занимающие часть пропускной способности сети. Дополнительным доводом в пользу применения IPX/SPX может послужить тот факт, что большинство сетевых игр используют этот протокол.

    1. 2. 3 TCP/IP

TCP/IP является скорее не единым, а совокупностью нескольких протоколов, в числе которых можно назвать TCP, UDP, ARP и многие другие. Этот протокол применяется наиболее широко. И хотя его применение в локальных сетях не особенно эффективно, он может с успехом применяться в глобальных сетях. Вот причины, по которым можно порекомендовать использование протокола TCP/IP: * Этот протокол наилучшим образом интегрируется с реализациями системы Unix * Этот протокол обеспечивает простую интеграцию и доступ к Интернету как посредством выделенного канала связи, так и с использованием Службы удаленного доступа и поддерживаемого модемом * Протокол может быть использован для поддержки WindowsNT Socket для доступа к базам данных SQL Server * Протокол является полностью маршрутизируемым.

* Обслуживание протокола значительно упростилось с введением DHCP и WINS TCP/IP. DHPC и WINS позволяют полностю автоматизировать выделение IP-адресов и распознование имен компьютеров NetBIOS. Протокол TCP/IP также необходим для осуществления непосредственного доступа к сети Интернет. Необходимость в нем отсутствует в случае, если доступ будет осуществляться через прокси-сервер. Прокси-сервер может быть настроен на использование TCP/IP для связи между ним самим и Интернетом, однако для связи прокси-сервера может использоваться протокол IPX/SPX.

    1. 3 Сетевые устройства и средства коммуникаций

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель и оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели: * стоимость монтажа и обслуживания

    * скорость передачи информации

* ограничения на величину расстояния передачи информации (без дополнительных усилителей-повторителей (репитеров)) * безопасность передачи данных

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

    1. 3. 1 Коаксиальный кабель

Коаксиальный кабель практически аналогичем телевизионному антенному кабелю. Он состоит из центрального медного провода в пластиковой изоляции, окруженного двумя слоями экранирующей оплетки и наружным пластиковым изоляционным слоем. Коаксиальный кабель имеет среднюю цену, хорошо помехозащитен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации.

    1. 3. 2 Широкополосный коаксиальный кабель

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передачи информации в базисной полосе частот на расстояние более 1, 5 км требуется усилитель, или так называемый репитер (повторитель). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км.

    1. 3. 3 Еthernet-кабель

Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстым Ethernet (thick) или желтым кабелем (yellow cable). Он использует 15-контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор. Такие кабели редко применяются в современных сетях по причине их высокой стоимости.

    1. 3. 4 Сheapernеt-кабель

Более дешевым, чем Ethernet-кабель является соединение Cheapernet-кабель или, как его часто называют, тонкий (thin) Ethernet. Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит / с. При соединении сегментов Сhеарегnеt-кабеля также требуются повторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР-50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T-connectors). Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате, как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала

    1. 3. 5 Витая пара

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое "витой парой" UTP (twisted pair). Кабель представляет собой две (четыре) пары проводов, скрученных между собой для создания резонансного магнитного поля, повышающего качество передаваемого сигнала. Витая пара легко наращивается, однако является помехонезащищенной. Преимуществами являются низкая цена и беспроблемная установка. Для повышения помехозащищенности информации часто используют экранированную витую пару (STP), т. е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля. Качество такого рода кабелей определяет степень скрученности его проводов. Чем сильнее закручена пара, тем выше качество. Витая пара позволяет передавать информацию со скоростью до 100 Мбит/с, Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Существует пять категорий витых пар. Категории 1 и 2 позволяют получать невысокое качество передачи и используются исключительно для передачи речевой информации. Категория 3 является минимальным требоваием для сетей со скоростью передачи 10 Мбит/с. Категория 4 используется в сетях со скоростями до 16 Мбит/с, а категория 5 – до 100 Мбит/с. Кабели категории 5 наиболее долговечны и надежны.

    1. 3. 6 Волоконно-оптические линии.

Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. По таким кабелям передается не электрические, а световые импульсы. Как и в коаксиальном кабеле, в волоконно-оптическом имеется центральная жила, однако сделана она не из меди, а из стекла. Она очень тонкая и по толщине не превосходит человеческого волоса. Вокруг центральной жилы распологается многослойная защитная оболочка. Однако вместо одного кабеля в данном случае приходится использовать два – отдельно для приема и для передачи данных. Скорость распространения информации по ним достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС (локальная вычислительная сеть). Применяется оно там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются с помощью звездообразного соединения. 1. 3. 7 Показатели типовых сред

Показатели трех типовых сред для передачи приведены в следующей таблице

    Показатели
    Среда передачи данных
    Двухжильный кабель – витая пара
    Коаксиальный кабель
    Оптоволоконный кабель
    Цена
    Невысокая
    Относительно высокая
    Высокая
    Наращивание
    Очень простое
    Проблематично
    Простое
    Защита от про-слушивания
    Незначительная
    Хорошая
    Высокая
    Проблемы с заземлением
    Нет
    Возможны
    Нет
    Восприимчи-вость к помехам
    Существует
    Существует
    Отсутствует
    Показатели типовых сред передачи данных

Существует ряд принципов построения ЛВС на основе вышерассмотренных компонентов. Такие принципы называют топологиями.

    1. 4 Топологии вычислительной сети
    1. 4. 1 Топология типа звезда

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

    Топология сети в виде звезды

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей. Передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях. Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления - файловый сервер может реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

    1. 4. 2 Кольцевая топология

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать