Химический состав винограда
p align="left">Диоксифумаровая кислота образуется из винной кислоты путём ей дегидрирования. Диоксифумаровая кислота существует в двух формах: в энольной и кетоформе в зависимости от применяемого реактива. Эти формы находятся в равновесии:

Диэнольная форма обладает сильными восстановительными свойствами. Диоксифумаровая кислота - неустойчивое соединение, в водных растворах даже при комнатной температуре распадается на CO2 и H2. Распад усиливается в присутствии железа и меди. В вине она появляется в результате окисления винной кислоты солями тяжёлых металлов, но быстро распадается в аэробных условиях, поэтому её трудно обнаружить в вине.

Диоксифумаровая кислота участвует в обмене веществ при созревании винограда. В молекуле диоксифумаровой кислоты содержатся две вторичные оксигрупп (COH COH), которые могут окисляться и восстанавливаться. Следовательно, эта кислота может функционировать в роли переносчика водорода. Диоксифумаровая кислота может служить промежуточным переносчиком водорода с субстрата на кислород воздуха, выполняя такую же функцию в биологическом окислении, как аскорбиновая кислота.

Диоксифумаровая кислота в винограде содержится в незначительном количестве. Она служит катализатором окислительно-восстановительных процессов. Диоксифумаровая кислота легко окисляется оксидазой диоксифумаровой кислоты. Поэтому в винограде содержатся продукты её распада: мезоксалевая, гликолевая и глиоксалевая и щавелевая кислоты. Диоксифумаровая кислота играет важную роль в восстановительных процессах в виноделии. Она легко дегидрируется, отдавая два водорода для восстановления веществ, обусловливающих букет вина, при этом вкус и букет вина улучшаются.

Гликолевая кислота (?-оксиуксусная) (CH2OH COOH) впервые была выделена в 1866 году из зелёного винограда Эрленмейером. Гликолевая кислота представляет собой бесцветные игольчатые кристаллы, легко растворяется в воде, спирте, эфире. Гликолевая кислота образуется из диоксифумаровой кислоты через оксипировиноградную кислоту. Гликолевая кислота легко окисляется оксидазой гликолевой кислоты с образованием глиоксалевой кислоты и H2O2 . Образовавшаяся перекись водорода участвует в окислительно-восстановительных процессах, в частности окисляет глиоксалевую и щавелевую кислоты в муравьиную, углекислоту и воду. Все продукты окисления глиоксалевой кислоты были найдены в винограде и вине.

Глюкуроновая кислота [COH (CHOH)4COOH] представляет собой иглоподобные кристаллы. При нагревании с HCl распадается на фурфурол, CО2 и H2O. В сусле и вине, полученном из винограда, поражённого грибком Ботритис цинереа, обнаруживается до 1,3 г/дм3 глюкуроновой кислоты. Такое увеличение обусловлено окислением глюкозы ферментами гриба.

Галактуроновая кислота представляет собой кристаллическое вещество; входит в состав пектиновых веществ винограда и вина. По химическим свойствам близка к глюкуроновой кислоте. В вине в связи с гидролизом пектиновых веществ содержание её увеличивается.

Глиоксалевая кислота была найдена в винограде в 1891 году М.Ордоно. Она образуется из винной кислоты путём глубокого окисления через диоксифумаровую кислоту. Глиоксалевая кислота в присутствии железа окисляется в щавелевую кислоту:

Щавелевая кислота (HOOC COOH•2H2O) кристаллизуется из воды в виде бесцветных белых кристаллов с двумя молекулами воды. Хорошо растворима в воде и диэтиловом спирте, нерастворима в хлороформе. Щавелевая кислота содержится в клеточной ткани незрелого винограда в виде кристаллов. Она содержится в сусле в количестве от 0,05 до 0,1 г/л. Она не участвует в синтезе углеводов в растениях и накапливается в виде кристаллов.

В вине при интенсивном проветривании винная кислота распадается до щавелевой кислоты через диоксифумаровую, дикетоянтарную, мезоксалевую и глиоксалевую. Щавелевая кислота в присутствии оксидазы щавелевой кислоты легко окисляется до углекислоты и воды.

Пировиноградная (?-кетопропионовая кислота) - это бесцветная жидкость, имеющая запах уксусной кислоты. В винограде встречается в незначительном количестве от 0,12 до 0,16 г/л. Количество пировиноградной кислоты в вине и шампанском значительно больше, так как она является промежуточным продуктом алкогольного брожения.

?-кетоглутаровая кислота образуется из глютаминовой кислоты, а также через цикл трикарбоновых кислот. ?-кетоглутаровая кислота содержится в шампанском в количестве от 15 до 40 мг/л, во французских вин - от 2 до 341 мг/л.

Мезоксалевая (?-кетомалоновая) кислота является нормальным продуктом обмена веществ, обладает всеми типичными реакциями кетонов и кислот.

Молочная кислота представляет собой прозрачную сиропообразную жидкость, которая с трудом кристаллизуется. Хорошо растворима в спирте, эфире и глицерине, нерастворима в бензине и хлороформе, перегоняется с перегретым паром.

В винограде содержится L-молочная кислота. В молодом вине она может образоваться в заметных количествах (до 0,5 г/дм3) из сахара как вторичный продукт спиртового брожения. Основные количества её получаются в результате яблочно-молочнокислого брожения. Высокое содержание молочной кислоты в вине обычно свидетельствует о заболевании вина. В здоровых белых винах молочной кислоты найдено от 0,5 до 1,5 г/дм3, в красных - от 1 до 5 г/дм3, в больных - до 12 г/дм3.

Глицериновая кислота (CH2OH CHOH COOH) представляет собой твёрдое вещество, существует в оптически деятельных формах. В винограде и вине содержится в небольших количествах.

Глюконовая кислота является твёрдым веществом. В природе обычно встречается D-глюконовая кислота, окислении образующаяся при ферментативном окислении ?- D-глюкозы. В винограде, поражённом благородной гнилью, найдено до 2 г/дм2 глюконовой кислоты, в вине из такого винограда - до 2,5; в вине из винограда, поражённого серой гнилью, - до 10 г/дм3.

Уксусная кислота представляет собой бесцветную жидкость, легко кристаллизующуюся при температуре 16°C, поэтому её называют ледяной. Примесь небольшого количества воды значительно снижает температуру плавления уксусной кислоты. Свинцовые соли уксусной кислоты - Pb(CH3COO)2•3H2O (свинцовый сахар) и основная соль - Pb(CH3COO)2•Pb(OH)2 (свинцовый уксус) - применяются в лабораторной практике для осаждения фенольных соединений и белков при определении сахаров и других веществ.

Олеиновая, линолевая и линоленовая кислоты содержатся в винограде и вине в свободном состоянии, но большая часть их - в связанном состоянии - в маслах и восковом налёте ягоды. Линолевая и линоленовая кислоты являются более насыщенными по сравнению с олеиновой кислотой и имеют соответственно: первая - две, вторая - три двойные связи.

Слизевая кислота (муциновая или галактаровая) представляет собой кристаллическое вещество. Трудно растворима в воде, легко получается окислением галактоновой кислоты. В здоровом винограде и вине содержится в небольших количествах. В винограде, поражённом грибком Ботритис цинереа (Botrytis cinerea), её содержание может достигать 0,5 г/дм3. В вине образует с кальцием труднорастворимую соль, выпадающую в осадок.

Сахарная кислота представляет собой кристаллическое вещество. Хорошо растворима в воде. Образуется окислением глюконовой кислоты. В заметных количествах сахарная кислота найдена в сусле и вине из винограда, поражённого грибком Ботритис цинереа (Botrytis cinerea).

Образование органических кислот в винограде происходит в процессе дыхания, в результате окисления сахаров и аминокислот. Вместе с тем органические кислоты могут служить источником биосинтеза углеводов, аминокислот, белков и эфиров. В зелёных ягодах винограда при температуре 10-15°C ночью происходит синтез органических кислот, а при высокой температуре днём (30-37°C) - синтез углеводов.

Органические кислоты характеризуют такой важный показатель, как кислотность сусла и вина. Активная кислотность вин (pH) обычно колеблется в пределах 3,0-4,2 г/дм3. Повышенное содержание в вине кислот, особенно яблочной, обусловливает неприятную резкость во рту. В этом случае такую кислотность называют зелёной. При недостаточной кислотности вино получается "плоским". В виноделии практикуется как подкисление, так и снижение кислотности сусел и вин. Операции эти проводятся в разных странах по-разному, в одних исправляется кислотность сусла, в других - вина.

Исследования последних лет показывают эффективность использования электродиализа для регулирования кислотности соков и вин. Повышенное содержание летучих кислот неблагоприятно влияет на качество вин, придавая им, резкость во вкусе и может свидетельствовать о заболевании вин. Поэтому во всех странах установлены нормы содержания летучих кислот в винах. Снизить их содержание можно добавлением вина в сбраживаемое сусло либо выдержкой под плёнкой хересных дрожжей.

Не только сами органические кислоты, но и продукты их взаимодействия (эфиры и другие) и превращений (продукты окисления винной кислоты) играют важную роль в процессе изготовления вина. При этом соли органических кислот (битартрат железа, оксалат железа) могут активно участвовать в ряде этих превращений (например, при окислении винной кислоты) в качестве катализаторов. Ряд солей органических кислот (винной, щавелевой, слизевой) могут быть причиной кристаллических помутнений вин.

Одним из основных показателей кондиционности (характеризующей соответствие выпускаемого продукта требованиям стандарта) вина является титруемая кислотность. Она находится в прямой зависимости от содержания кислот в сырье, из которого изготовляется вино. Под титруемой кислотностью принято понимать содержание в вине или соке плодов и ягод свободных кислот и их кислых солей. Титруемая кислотность определяется при помощи титрования щёлочью определённого объёма исследуемой жидкости и выражается в граммах на литр (г/л) для виноградного виноделия в пересчёте на винную кислоту и для плодово-ягодного - на яблочную. Изменение величины титруемой кислотности служит показателем хода созревания винограда. Определение её приобретает важное значение при приёмке плодово-ягодного сырья.

Во время созревания винограда титруемая кислотность снижается. Для технически зрелого винограда она колеблется в зависимости от сорта от 3,5 до 14 г/л, составляя в среднем около 7 г/л. Количество сахара в ходе созревания возрастает. Соотношение между содержанием сахара (С) и титруемой кислотностью (К), т.е. С:К, носит название глюкоацидометрического (сахарокислотного) показателя. В зависимости от величины этого показателя определяется время сбора винограда с учётом типа вина, который предполагается получить из данного сорта. Глюкоацидометрический показатель зависит также от метеорологических условий года.

Большое практическое значение в виноделии имеет также активная кислотность. Активная (истинная) кислотность в отличие от титруемой кислотности показывает концентрацию ионов водорода в исследуемой жидкости. Она обычно выражается через так называемый водородный показатель, который представляет собой отрицательный десятичный логарифм концентрации водородных ионов и обозначается символом pH. Известно, что кислоты в водных растворах диссоциируют, то есть распадаются на обладающие определённым зарядом ионы водорода и ионы кислотного остатка. При одинаковых концентрациях степень диссоциации разных кислот различна. Высокой степенью диссоциации обладают соляная и серная кислота, которые почти полностью диссоциируют в слабых растворах. Органические кислоты. Например, винная, яблочная и лимонная, диссоциируют незначительно, причём винная больше, чем яблочная и лимонная.

Активная кислотность сусел и вин колеблется в среднем в пределах pH 2,8-3,8, однако, в винах, приготовленных из винограда южных районов, величина pH достигает 4,6. Созревание ягод характеризуется увеличением значения pH. При низком pH исключается возможность грибковых и некоторых бактериальных заболеваний сусла и вина, вина меньше подвержены окислению. Большая величина pH сказывается неблагоприятно на качестве вин. При pH больше 3,5 развиваются бактерии, разлагающие винную кислоту и её солей, изменяется окраска вин. Виноградное сусло и приготовленные из него вина, содержащие в основном винную кислоту, имеют более низкую величину pH при более низкой титруемой кислотности.

1.2 Технологическое значение органических кислот

Органические кислоты характеризуют такой важный показатель, как кислотность сусла и вина. Активная кислотность вин (pH) обычно колеблется в пределах 3,0-4,2 г/дм3. Повышенное содержание в вине кислот, особенно яблочной, обусловливает неприятную резкость во рту. В этом случае такую кислотность называют зелёной. При недостаточной кислотности вино получается "плоским". В виноделии практикуется как подкисление, так и снижение кислотности сусел и вин. Операции эти проводятся в разных странах по-разному, в одних исправляется кислотность сусла, в других - вина.

Для подкисления сусла (вина) используется винная и лимонная кислоты, сусло недозрелого винограда и купаж сусел и вин с разной кислотностью. Количество винной кислоты, вводимой в сусло, в некоторых странах не лимитируется, в других - добавление её в вино (сусло) ограничивается (например, до 2 г/дм3). Лимонную кислоту разрешается вводить в сусло (вино) только в некоторых странах в количестве от 0,5 до 2 г/дм3. При этом считается, что главным является не столько само подкисление, сколько образование комплексов лимонной кислоты с железом. Недостатком этого технологического приёма является то, что лимонная кислота, будучи малоустойчивой, в вине, может быть источником летучих кислот. Образующихся под действием молочнокислых бактерий. Недостатком использования сусла недозрелого винограда является возможность привнесения в вино специфического привкуса недозрелого винограда. Купаж сусел и вин с разной кислотностью получил наибольшее распространение.

Избыток в сусле (вине) яблочной кислоты удаляют биологическим способом, который основан на способности некоторых микроорганизмов сбраживать яблочную кислоту. В виноделии нашли применение молочнокислые бактерии и дрожжи рода (Schizosaccharomyces) (шизосахаромицес). Поскольку при молочнокислом брожении из двухосновной яблочной кислоты образуются одноосновная молочная кислота и диоксид углерода, снижение титруемой кислотности происходит наполовину сброженной яблочной кислоты. Дрожжи рода шизосахаромицес сбраживают яблочную кислоту с образованием спирта и диоксида углерода (яблочно-спиртовое брожение). Поэтому величина снижения титруемой кислотности в этом случае равна количеству сброженной яблочной кислоты. Молочнокислые бактерии используются при производстве столовых вин, дрожжи рода шизосахаромицес - как столовых, так и креплёных. Биологический способ снижения кислотности сусла (вина) трудоёмок, что сдерживает его распространение.

Исследования последних лет показывают эффективность использования электродиализа для регулирования кислотности соков и вин. Повышенное содержание летучих кислот неблагоприятно влияет на качество вин, придавая им, резкость во вкусе и может свидетельствовать о заболевании вин. Поэтому во всех странах установлены нормы содержания летучих кислот в винах. Снизить их содержание можно добавлением вина в сбраживаемое сусло либо выдержкой под плёнкой хересных дрожжей.

Не только сами органические кислоты, но и продукты их взаимодействия (эфиры и другие) и превращений (продукты окисления винной кислоты) играют важную роль в процессе изготовления вина. При этом соли органических кислот (битартрат железа, оксалат железа) могут активно участвовать в ряде этих превращений (например, при окислении винной кислоты) в качестве катализаторов. Ряд солей органических кислот (винной, щавелевой, слизевой) могут быть причиной кристаллических помутнений вин.

2. Пектиновые вещества

В стеблях и плодах растений содержится значительное количество пектиновых веществ, представляющих собой сложный высокомолекулярный углеводный комплекс. Пектиновые вещества состоят в основном из пектина и пектиновых кислот - полигалактуроновых кислот, находящихся в коллоидном состоянии и содержащих большое количество метоксильных групп (ОCH3).

Пектин (pectin) - высокомолекулярное соединение, также содержащее D- галактуроновые кислоты, молекулы которых на 75% частично связаны с кальцием и магнием. Пектин имеет следующее строение:

5

Молекулярная масса его превышает 30000. В незрелых плодах находится протопектин - нерастворимые в воде пектиновые вещества, при созревании плодов превращающиеся в растворимый пектин. В перезрелых плодах пектин распадается на пектиновую кислоту и метиловый спирт, поэтому в соках и винах из таких плодов и ягод содержится в небольших количествах токсичный метиловый спирт - CH3OH.

Пектиновые вещества включают протопектин, пектин (или растворимый пектин), пектиновую кислоту и её соли (пектинаты), пектовую кислоту и её соли (пектаты).

Протопектин (protopectin) состоит из полигалактуроновых кислот, связанных с галактаном и арабаном клеточной стенки. Он нерастворим в воде, входит в состав клеточных стенок и срединных пластинок молодых тканей. Для извлечения его из растительных тканей применяются разбавленные растворы соляной и щавелевой кислот, щавелевокислый и лимоннокислый аммоний и другие растворители. При кислотном (разбавленными кислотами) либо ферментативном гидролизе протопектин переходит в растворимый пектин.

Пектиновая кислота (pectin acid) представляет собой высокомолекулярную полигалактуроновую кислоту, частично этерифицированную метиловым спиртом. В состав её входит около 200 остатков галактуроновой кислоты. Пектиновая кислота слабо растворяется в воде (около 1%). Щелочные соли пектиновой кислоты хорошо растворимы в воде. В виде пектата кальция она легко осаждается из раствора, что используется для количественного определения пектиновых веществ. Соли пектиновых кислот называются нормальными или кислыми пектинатами (pectinates).

Пектовая кислота (pectic acid) содержит около 100 остатков галактуроновой кислоты. В её составе найдены пектиновые кислоты, обладающие коллоидными свойствами, свободные от метоксильных групп. Соли (пектаты) щелочных металлов пектовой кислоты в воде растворимы, соли поливалентных металлов - практически нерастворимы.

Так как пектин обладает свойствами коллоидов, то наличие его в сусле и винах затрудняет их фильтрацию. Пектин образуется в клеточных стенках ягод и плодов. Поэтому вина, приготовленные настаиванием сусла, содержат больше метилового спирта, чем вина, приготовленные по обычной технологии.

Пектиновые вещества имеют большое значение в технологии переработки винограда. С их состоянием связано, прежде всего, отделение сусла, которое затруднено при наличии большого количества высокомолекулярных комплексов, связанных пектином. Скорость осветления и фильтрации сусла, соков и вин в значительной степени зависит от состояния пектиновых веществ. Вместе с тем полное удаление пектиновых веществ делает вкус соков и вин водянистым, жидким, увеличивает количество метанола.

Для соков с мякотью, виноградной пасты, джема, варенья из винограда, наоборот, необходимо максимальное сохранение пектиновых веществ от разрушения. С этой целью виноград бланшируют при температуре 96-98°C. Содержание пектиновых веществ в винограде зависит от сорта, степени зрелости и обычно колеблется в пределах 0,5 - 2,0 г/л. В мускатных и столовых сортах винограда пектина больше - до 4-5 г/л. Именно эти сорта винограда и следует перерабатывать на пектинсодержащие кондитерские изделия. В вине после брожения, выдержки и обработки остаётся примерно 0,1 - 0,6 г/л пектиновых веществ. Продукты превращения пектиновых веществ могут оказывать влияние на аромат и вкус вин, ответственны за появление коллоидных, а иногда и кристаллических помутнений.

Растворимый пектин, обладая коллоидными свойствами, затрудняет осветление сусла. В виноделии применяют пектолитические ферментные препараты. В результате их действия растворимый пектин быстро гидролизуется и теряет свои защитные свойства. Вязкость сусла при этом снижается и оно быстро осветляется. Пектиновая и пектовая кислоты и их соли частично выделяются в осадок.

К группе пектиновых веществ, встречающихся в винограде, тесно примыкают высокомолекулярные соединения, состоящие из полимеров глюкозы и носящие название декстранов. Они представляют собой студенистые вещества, образующие коллоидные растворы. Особенно много декстранов в винограде, который поражён грибком, называемым благородной гнилью (Botrytis cinerea). Декстраны могут быть выделены при добавлении в сусло или вино крепкого спирта. При повышении крепости спирта из раствора сначала выпадают пектиновые вещества с небольшой примесью камедей, причём количество этих примесей возрастает с увеличением крепости спирта.

К декстранам близка группа, носящая название камедей. В их состав входят калиевые, кальциевые и магниевые соли высокомолекулярных кислот, состоящих из остатков гексоз, пентоз, метилпентоз и уроновых кислот. Камеди хорошо растворяются в воде без образования студней. При гидролизе камедей, кроме галактуроновой кислоты, найдены галактоза, манноза, арабиноза, рамноза и ксилоза. Для виноделия камеди представляют интерес как защитные коллоиды, препятствующие выделению в осадок взвешенных в вине частиц.

Заключение

Виноград - один из ценнейших диетических и пищевых продуктов питания. В ягодах свежего винограда содержится до 30% легкоусвояемых сахаров - глюкозы, фруктозы и небольшое количество сахарозы. Фруктоза усваивается организмом человека без участия поджелудочной железы, что имеет большое значение в профилактике диабета.

В свежем винограде имеется также большой набор органических кислот - яблочной, винной, лимонной, янтарной, галловой, муравьиной, щавелевой, салициловой и других кислот. Ягоды винограда богаты минеральными солями - калия (235 мг), кальция (45 мг), натрия (26 мг), фосфора (22 мг), а также марганца, кобальта, железа. Сто граммов свежего винограда обеспечивают 4% суточной нормы потребления кальция; 1,6 - магния; 0,12 - фосфора; 16,4 - железа; 2,7 - меди; 16,6 - марганца. В кожице ягод есть красящие вещества (пигменты), соединения дубильного комплекса, воск, состоящий из смеси глицеридов жирных кислот.

Виноград отличается высоким содержанием витаминов групп А, С, Р, В (В2, В6, В12 и других ), витамина РР. В соке ягод выявлен тиамин (В1), пантотеновая (В3) и никотиновая (РР) кислоты, пиридоксин (В6) и инозит. Количество витаминов группы В, аминокислот, полезных для человека микроэлементов в свежих ягодах винограда во многом зависит от срока созревания сорта, наличия или отсутствия семян в ягодах, степени их развития, высоты над уровнем моря и технологических приёмов возделывания.

Ещё в античный период в медицине родилось направление лечения виноградом - ампелотерапия (греч. ampelos - виноград, therapeia - лечение). Оно получило научное обоснование во второй половине XIX века, когда были экспериментально изучены химический состав свежего винограда и продуктов его переработки, исследованы их лечебные свойства в клинических условиях.

Для того чтобы уяснить значение механического состава винограда, необходимо знать хотя бы простейшее строение виноградной грозди, состоящей из гребня и ягод. Каждая ягода внутри наполнена мякотью и окружена кожицей. Внутри мякоти находятся семена. Виноградные ягоды представляют особую ценность как сырьё для виноделия, так как мякоть их содержит сахаристый сок.

Механический состав винограда представляет собой соотношение отдельных частей грозди: гребней, сока, кожицы, мякоти, семян. Он различен не только для разных сортов, но и в пределах одного сорта, так как зависит от многих факторов: степени зрелости, почвы, климата, района произрастания и других условий культивирования виноградного растения.

Список литературы

[ 1.] Евсина Т.П., О.В.Розправкова, Жиров В.М. Ж.: Хранение и переработка сельхозсырья, №9. 2007. 63 с.

1 Бегунова Р.Д. Химия вина. М.: Пищевая промышленность, 1972. 224 с.

2. Бочков А.Ф., Афанасьев В.А., Заиков Г.Е. Углеводы. М.: Наука, 1980. 176с.

3. Валуйко Г.Г. Биохимия и технология красных вин. М.: Пищевая промышленность. 1973. 296 с.

4. Калунянц К.А. Химия солода и пива. М.: Агромпромиздат, 1990. 175 с.

5. Кишковский З.Н., Скурихин И.М. Химия вина. М.: Агропромиздат, 1988. 252 с.

6. Нилов В.И., Скурихин И.М. Химия виноделия и коньячного производства. М.: Пищепромиздат, 1960. 322 с.

7. Нудель Л.Ш., Короткевич А.В. Микробиология и биохимия вина, 1980. 153с.

8. Родопуло А.К. Основы биохимии виноделия. М.: Лёгкая и пищевая

промышленность, 1983. 239 с.

9. Рыбаков А.А. Виноградство. Ташкент: Наука, 1975. 340 с.

10. Смирнов К.В. Виноградство, М.: Наука, 1987. 189 с.

11. Фулга И.Г. Основы виноградства и плодоводства. М.: Агропромиздат, 1989. 223 с.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать