Характеристика каротиноидов плодов и овощей
b>1.3 Роль каротиноидов для организма человека

1.3.1 Значение и функции

Хотя многие аспекты физиологических функций каротиноидов остаю
тся невыясненными до конца, можно с уверенностью утверждать, что они играют важную роль в различных физиологических процессах, без которых жизнь в существующей форме была бы невозможна.

Одна из важнейших функций каротиноидов -- А-провитаминная активность. Человек и животные не способны синтезировать витамин А, который является незаменимым для зрения, роста, репродукции, защиты от различных бактериальных и грибковых заболеваний, нормального функционирования кожи и слизистых. Витамин А не образуется и в растительных тканях, и может быть получен только путем преобразования провитамин-А активных каротиноидов (прежде всего в-каротина, а также б-каротина, криптоксантина, 3,4-дигидро-в-каротина, астаксантина, кантаксантина и др.). [6]

Ранее исследования показывали, что в-каротин, будучи антиоксидантом, снижает вероятность заболеваний раком людей, употребляющих много продуктов, богатых в-каротином. Но последние крупные исследования показали, что в-каротин увеличивает риск раковых заболеваний у курильщиков. В ходе ряда исследований было доказано, что употребление в-каротина приводит к увеличению вероятности заболевания раком легких и раком простаты курильщиков, а также людей, работающих на асбестовом производстве .

Однако это действие каротина относится только к курильщикам и людям контактирующим с вредными веществами. Это связано с тем, что бета-каротин активизирует канцерогенные вещества, находящиеся в табачном дыме и асбесте. А канцерогены в свою очередь повреждают человеческие клетки и превращают их в раковые. [12]

В то же время, витамин А и его производные ретиноиды - можно использовать при нарушении процессов керотинизации, а также для профилактики и лечения некоторых раковых заболеваний. В основу этих рекомендаций положены данные о том, что ретиноиды способны влиять на рост опухолей путем воздействия на иммунную систему, на дифференциацию ткани (особенно эпителиальной), на адгезивные свойства клеток и клеточные взаимодействия. Витамин А и его производные оказались эффективным средством при лечении прелейкемического синдрома, канцеромы языка, меланомы. Особенно ценным в действии ретиноидов на опухоли является то, что эффект этих соединений основан на иных механизмах подавления роста злокачественных клеток, чем при использовании обычной цитотоксической хемотерапии. [2]

Представляет интерес влияние каротиноидов на эндокринную систему, особенно это касается полового развития и созревания, оплодотворения, прохождения репродуктивных процессов.

Еще одна важная функция -- способность образовывать комплексы с протеинами. Известно, что маленькие молекулы (так называемые аллостерические эффекторы) изменяют агрегационное состояние протеинов, тем самым стабилизируя их протеиновую и энзимовую активность. Эта способность также обуславливает изменения проницаемости мембран.

Каротиноиды могут косвенно поддерживать водный баланс организма, способствуют работе обонятельных рецепторов и хеморецепторов.

Считается, что каротиноиды (ксантофилы) используются как запас кислорода в нейрональной дыхательной цепочке и потому важно их наличие в кислородных клетках и тканях.

Учитывая существующую взаимосвязь между высокой каротиноидной и кальциевой концентрацией, в особенности в компонентах митохондрий с каротиноидсодержащими мембранами, можно заключить, что эти липохромы играют большую роль в транспорте кальция через мембраны. [7]

Установлена иммуностимулирующая роль каротиноидов. Например, обнаружено, что рыбы с высоким содержанием каротиноидов были значительно более устойчивы к инфекционным и грибковым заболеваниям; цыплята -- устойчивы к энцефалопатии и т.д. Каротиноиды увеличивают цитостатическую активность клеток-киллеров, замедляют рост опухоли и ускоряют ранозаживление. Они также проявляют аппетитстимулирующую активность (и физиологически, и этиологически).

Весьма важной, проявляющейся внешне, функцией каротиноидов является их способность обеспечивать яркую окраску организмов, которая может выполнять сигнальную функцию, нести информацию.

Отмечено, что продукты разложения каротиноидов также обладают специфическими физиологическими функциями: например, участвуют в синтезе фитогормонов. [8]

1.3.2 Нормы потребления

Согласно методическим рекомендациям по нормам рационального питания 6 мкг бета-каротина эквивалентны 1 мкг витамина А. Среднее потребление в разных странах 1,8-5,0 мг/сутки. Верхний допустимый уровень п
отребления не установлен. Физиологическая потребность для взрослых - 5 мг/сутки. Ликопина следует употреблять порядка 5 мг в сутки, верхний допустимый уровень потребления -- 10 мг в сутки. Рекомендуемый уровень потребления лютеина в России -- 5 мг в сутки. Верхний допустимый уровень потребления -- 10 мг в сутки.

Благодаря контролируемому превращению бета-каротина в витамин А избыточное потребление бета-каротина не приводит к развитию гипервитаминоза А. Избыточный прием каротиноидов при различных заболеваниях (гиперлипемия, сахарный диабет, нефротический синдром или гипертиреоз) может вызывать гиперкаротедермию, которая проявляется в желтоватом оттенке кожи в основном ладоней и подошв стоп. При уменьшении или прекращении приема каротиноидов желтый цвет исчезает. [14, 16]

1.3.3 Усвоение каротиноидов организмом человека

Человек и животные не могут синтезировать каротиноиды de novo, их п
оступление зависит только от источников питания. Усвоение каротиноидов, как и других липидов, происходит в дуоденальной области тонкого кишечника. Под влиянием желудочно-кишечной среды (например кислотности желудочного сока), наличия специфических рецепторов протеинов каротиноиды могут разрушаться окислителями или энзимами или метаболизировать, как например в-каротин в витамин А в слизистой. Провитаминные свойства в -каротина и его окислительное преобразование в витамин А являются общими для всех животных. Согласно принятой гипотезе в -каротин превращается в витамин А в слизистой кишечника под воздействием фермента каротиндиоксигеназы. Молекула в -каротина, которая теоретически должна образовывать 2 молекулы витамина А, уменьшается с одного конца цепи в результате последовательного окисления до ретиналя (С20-соединения) и образует одну молекулу витамина А. Другие каротиноиды также могут проявлять А-провитаминную активность. [11, 24]

Установлено, что содержащиеся в продуктах питания каротиноиды далеко не полностью усваиваются организмом. Находясь внутри неповрежденных клеток растительных продуктов, каротиноды ресорбируются в кровь обычно в очень малой степени. Значительно лучше происходит усвоение из мелко измельченных и предварительно обработанных продуктов, в которых клеточные мембраны разрушены.

Кроме того, важным фактором для усвоения каротиноидов организмом является наличие жировой среды. Еще в 1941 году было установлено, что количество каротина, усвояемого организмом из сырой моркови при диете, лишенной жиров, не превышает 1%. При тех же условиях из вареной моркови усваивается 19% каротина. После добавления растительного масла усвоение каротина увеличивается до 25%. [5, 9]

1.4 Методы количественного определения каротиноидов

В настоящее время каротиноиды изучены очень хорошо. Замечательные успехи, достигнутые биохимией в области выделения, очистки, установления структуры изучения биохимических реакций каротиноидов, были сделаны благодаря гениальному по простоте и изяществу методу хроматографического адсорбционного анализа, разработанному в 1903 г. М.С. Цветом.

Хроматографический метод. Принцип этого метода заключается в том, что сложная смесь различных окрашенных веществ, растворенных в каком-либо органическом растворителе, например смесь различных каротиноидов, полученная путем экстрагирования листьев петролейным эфиром или сероуглеродом, пропускается через вертикально поставленную стеклянную трубку, наполненную адсорбентом. В качестве адсорбента могут быть использованы карбонат кальция, тальк, крахмал и другие вещества. Так как каждый из содержащихся в растворе пигментов обладает определенной, только ему свойственной способностью адсорбироваться на заполняющем трубку адсорбенте, то происходит разделение этих пигментов, и каждый из них концентрируется в строго определенном слое адсорбента. В стеклянной трубке с адсорбентом, называемой адсорбционной колонкой, получается несколько полос, окрашенных в разные цвета, в зависимости от того, какой пигмент адсорбировался в том или ином слое адсорбента. Слой адсорбента, содержащий тот или иной пигмент, вынимают из трубки, и адсорбированное вещество, отделенное таким образом от других присутствующих в растворе веществ, может быть экстрагировано (элюировано) из адсорбента с помощью какого-либо другого растворителя, например спирта. Выделенные таким образом пигменты могут быть подвергнуты повторному хроматографическому анализу на других адсорбентах и с другими растворителями. Если данный пигмент представляет собой смесь двух и трех изомеров, имеющих одинаковую эмпирическую формулу, но различающихся лишь незначительными особенностями своих структурных формул, то с помощью дальнейшего хроматографического анализа можно разделить такие, весьма близкие по своим свойствам изомеры. Этим методом были разделены, выделены в чистом виде и исследованы три изомера каротина, имеюгцие одинаковую эмпирическую формулу С40Н56. С помощью хроматографического анализа было показано также, что пигменты желтой кукурузы представляют собой смесь трех каротиноидов -- лютеина, криптоксантина и цеаксантина. [9]

Хроматографический адсорбционный анализ, разработанный Цветом на смесях окрашенных веществ, в настоящее время нашел широчайшее применение при разделении, выделении и исследовании самых разнообразных веществ, не обладающих окраской. Благодаря этому методу удается разделение, очистка и получение в чистом виде витаминов, аминокислот, белков, пептидов, ферментов, различных неорганических веществ и т. д. При разделении и идентификации очень малых количеств веществ исключительно большую помощь оказывает биохимикам одна из разновидностей хроматографического анализа -- так называемая распределительная хроматография на бумаге, разработанная английскими биохимиками А. Мартином и Р. Сингом. Она основана на том, что различные вещества по-разному диффундируют и распределяются на листе фильтровальной бумаги, пропитанном смесью определенных органических растворителей.

Особенно чувствительными разновидностями хроматографии являются называемые тонкослойная и газовая хроматографии, которые находят все бол широкое применение в биохимии, биоорганической химии и пищевой химии.

Газовая хроматография в настоящее время -- наиболее точный и быстрый метод анализа липидов. [13]

Методы извлечения каротиноидов. Традиционные методы извлечения каротиноидов из природных объектов состоят в гомогенизировании биомассы при охлаждении (процесс проводят обычно в присутствии антиоксидантов в темноте), извлечении пигментов полярными растворителями, например ацетоном или метанолом. Далее каротиноиды переводят в неполярные растворители -- гексан или петролейный эфир. Индивидуальные пигменты получают путем хроматографирования в тонком слое адсорбента (силикагель, алюминий). При использовании последнего сорбента разделение каротиноидов целесообразнее проводить в системе растворителей, содержащей различное количество гексана и ацетона. При разделении ксантофиллов перед тонкослойной хроматографией на силикагеле проводят предварительный щелочной метанолиз. Если каротиноиды связаны с белками, то для их извлечения используют детергенты, например тритон Х-100 (2 %) или додецилсульфат натрия (1%).

Первоначальную информацию о строении выделенного каротиноида дает исследование спектров поглощения пигмента в видимой области. Эти данные наряду с принятыми химическими методами исследования каротиноидов (озонолиз, восстановление NaBH4 и др.) позволяют составить представление о возможной структуре пигмента. Далее определяют сравнительную полярность изучаемого пигмента в разных хроматографических системах.

Масс-спектрометрия. Масс-спектрометрия используется для установления молекулярной массы каротиноида и особенностей строения. Информацию о наличии определенных функциональных групп в пигменте могут дать ИК- и ЯМР-спектры. Стереохимия каротиноида является конечным этапом его изучения. Наиболее полные данные о стереохимии каротиноида можно получить, используя спектры кругового дихроизма и низкотемпературные спектры поглощения (при температуре жидкого азота). Окончательное заключение о строении изучаемого каротиноида дают рентгеноструктурный анализ и тотальный синтез полиена. Следует отметить, что все перечисленные выше анализы могут быть проведены с небольшим количеством образца (около 10 -- 20 мг), что в значительной степени содействовало развитию в последние годы химии каротиноидов. [9, 23]

1.5 Использование каротиноидов

Уже в течение многих лет каротиноиды широко применяются в сельском хозяйстве, медицине и пищевой промышленности. Их присутствие во многих природных продуктах делает их идеально пригодными для этой цели.

Каротиноиды получают с помощью химического синтеза и путем выделения из природных источников -- растений и микроорганизмов. Химическим путем получают в-каротин, витамин А, в-апо-8-каротиналь, этиловый эфир в-апо-8-каротиновой кислоты, кантоксантин и ряд других каротиноидов, синтез которых осуществляется в заводских масштабах. Традиционными источниками получения каротиноидов служат также некоторые растения - морковь, тыква, трава, шиповник, облепиха и др. Наряду с этим все шире в тех же целях используют мицелиальные грибы и дрожжи. Как продуценты каротиноидов представляют также интерес бактерии и водоросли. [20]

в-Каротин используют главным образом в пищевой промышленности, а также при изготовлении лекарств и косметических средств. в-Каротин и ликопин применяют как пигментные вещества и красители при изготовлении таких пищевых продуктов, как колбасы и ветчинные изделия, сливочное масло. Как краситель используют также в-апо-8-каротиналь, придающий оранжевую окраску многим кондитерским изделиям, сырам и овощным пастам. [18]

В пищевые жиры, особенно в сливочное масло и маргарин, добавляют в-Каротин, благодаря чему организм получает дополнительное количество необходимого для него витамина А, а масло - более привлекательный цвет. Масло нагревают до 30'С и добавляют вытяжку из моркови или в-каротин, который при такой температуре хорошо растворяется в масле. Водорастворимые или по крайней мере диспергируемые в воде производные в-каротина, кантаксантин и апокаротиноиды, применяются для окрашивания напитков и других пищевых продуктов. В Италии существует давняя традиция добавлять каротиноиды в макаронные изделия. в-Ка-ротин и в-апо-8-каротиналь добавляют также в сыры и овощные пасты. Эти же каротиноиды используют для окраски яичного желтка (в-апо-8-каротиналь добавляют в пищевой рацион кур). [2]

Часто каротиноиды-красители используют в сочетании с аскорбиновой кислотой, что обеспечивает большую стабильность пигментов. Для лучшей сохранности каротиноидов при использовании их в качестве красителей применяют также особые препаративные формы пигментов. Каротиноиды растворяют в маслах или готовят вододисперсные формы: в такой форме пигменты заключают в микрокапсулы (наиболее удобная форма сохранения каротиноидов). Велико значение каротиноидов, в частности ликопина, при изготовлении колбас и ветчинных изделий, где, они могут заменить нитрит натрия. Как краситель используют также в-апо-8-каротиналь, придающий оранжевую окраску леденцам, пищевым пастам, кексам и другим кондитерским изделиям. [15]

В медицине каротиноиды используются главным образом для профилактики или лечения авитаминоза А. В этих случаях рекомендуется пищевой рацион, богатый каротиноидами, или специальные препараты. Вместе с тем, как недавно показано, при некоторых кожных заболеваниях, которые обостряются под действием солнечного излучения, каротиноиды играют защитную роль. В частности, большие дозы в-каротина значительно смягчают симптомы эритропоэтической Порфирии. Для этой болезни характерно нарушение метаболизма порфиринов, в результате чего они накапливаются в организме и начинают играть роль фотосенсибилизаторов. У таких больных под влиянием солнечного света появляется зуд, жжение и отечность. В настоящее время рассматривается также возможность использования каротиноидов. Кроме того, установлено, что каротикаротиноиды оказывают терапевтический эффект на развитие рака кожи, индуцируемого УФ-излучением или диметилбензантраценом. [2]

Заключение

Каротиноиды представляют собой классический пример группы природных пигментов. Все члены этой группы обладают очень близкой структурой, основанной на сопряженном полиеновом хромофоре, который и обуславливает их светопоглощающие свойства. Они дают возможность наблюдать четкую корреляцию между максимумом поглощения и длиной хромофора. Каротиноиды чрезвычайно широко распространены у живых организмов и принимают участие во всех фотофункциях, обычно связанных с природными пигментами.

Использование каротиноидов в качестве пищевых добавок, красителей и провитаминов А уже происходит в большиз количествах и постоянно расширяется. Это связано с увеличением спроса на природные красители, которые часто предпочитают синтетическим красящим веществам, а также с налаженным промышленным производством каротиноидов. Если число каротиноидов, которые могут быть использованы, и особенно диапазон красок, который может быть получен, увеличаться, то применение каротиноидов станет еще более широким.

Несомненный интерес представляют данные о том, что в-каротин оказывает терапевтический эффект на развитие рака кожи, индуцируемого УФ-излучением или диметилбензантраценом. Установлено, что и другой каротиноид -- кантаксантин, а также полиен фитоин обладают антираковой активностью в отношении рака кожи, индуцированного УФ-излучением.

Таким образом, изучение каротиноидов весьма перспективно и позволяет широко использовать эти соединения в промышленности, медицине и сельском хозяйстве.

Список использованных источников

1. Карнаухов, В.Н. Биологические функции каротиноидов/ В.Н. Карнаухов. - М.: Наука, 1988. - 240 с.

2. Бриттон Г. Биохимия природных пигментов: пер. с англ. / Г. Бриттон. - М.: Мир, 1986. - 422 с.

3. Гудвин Т. Сравнительная биохимия каротиноидов: пер. с англ. Ф. В. Церевитина/ Т. Гудвин. - М.: Мир, 1974. - 541 с.

4. Гудвин Т. Введение в биохимию растений: Пер. с англ. под ред. В.Л. Кретовича/ Т. Гудвин, Э. Мерсер. - М., 1986. - 630 с.

5. Дмитровский А.А. Экспериментальная витаминология/ А. А. Дмитровский, Островская Ю. М. - Минск.: Наука и техника, 1979. - 233 с.

6. Душейко А.А. Витамин А / А.А. Душейко. - Киев: Наукова Думка, 1988. - 512 с.

7. Конъ И.Я. Биохимические механизмы действия витамина А / И.Я. Конь. - М.: Ин-т питания АМН СССР, 1987. - 216 с.

8. Коротилова А.И. Витамины / А.И. Коротилова, Е.П. Глушанков. - СПб.: 1976. - 273 с.

9. Кретович В.Л. Биохимия растений: Учеб. - 2-е изд., перераб. и доп.; для биол. спец. ун-тов / В.Л. Кретович. - М.: Высш. шк., 1986. - 503 с.

10. Метлицкий Л.В. Основы биохимии плодов и овощей / Л. В. Метлицкий.- М.: 1976. - 203 с.

11. Овчаров К.Е. Витамины растений / К.Е. Овчаров.- М.: 1969. - 492 с.

12. Кротов С.М. Популярная медицинская энциклопедия: 4-е издание/ С.М. Кротов, А.Г. Шлепаков - Ульяновск.: “Книгочей”, 1997. - 165 с.

13. Аркадьева З.А. Промышленная микробиология: Учеб. пособие для вузов по спец. «Микробиология» и «Биология» / З.А. Аркадьева, А.М. Безбородов, И.Н. Блохина [и др.]. - М.: Высш. шк., 1989. - 688 с.

14. Савинов Б.Г. Каротин (провитамин А) и получение его препаратов. / Б.Г. Савинов. - Киев: Наукова Думка, 1978. - 264 с.

15. Семенов В.Ф. Пигменты пищевых производств (меланоидины)/ В.Ф. Селеменов, О.Б. Руданов, Г.В. Славянская, Н.В. Дроздова. -М.: Дели принт, 2008. - 246 с.

16. Сисакян Н.М. Биохимия и физиология витаминов/ Н.М. Сисакян. - М.: Колос, 1953. - 254 с.

17. Скорикова Ю.Г. Полифенолы плодов и ягод и формирование цвета продуктов: учебник/ Ю.Г. Скорикова. - М.: Пищ. пром-ть. - 1973. - 230 с.

18. Слепнева А.С. Товароведение плодоовощных, зерномучных, кондитерских и вкусовых товаров / А.С. Слепнева, А.Н. Кудяш, П.Ф. Пономарев. -2-е изд., переработанное. - М.: Экономика, 2007. -243 с.

19. Стайлер Л.К. Биохимия/ Л.К. Стайлер.- М.: Мир., 1985. - 476 с.

20. Гончарова В.Н. Товароведение пищевых продуктов/ В.Н. Гончарова, Е.Я. Голощапова. - М.: Экономика, 1990 г. - 263 с.

21. Третьяков Н.Н. Физиология и биохимия сельскохозяйственных растений/ Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин [и др.]. - М.: Колос, 2000. - 180 с.

22. Химический состав и энергетическая ценность пищевых продуктов: справочник Мак Канса и Уиддоусона/ пер. с англ. под общ. ред. А.К. Батурина. - СПб.: Профессия, 2006. - 416 с.

23. Энциклопедический словарь - М.: Большая советская энциклопедия, 1955. - 864с.

24. Яковлева Н.Б. Химическая природа нужных для жизни витаминов/ Н.Б. Яковлева. - М.: Просвещение, 2006. - 120 с.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать