Закаливание растений
ля предупреждения растений от заболевания фитофторой, в зависимости от погодных условий, помидоры опрыскивают 0,5% раствором хлорокиси меди или 1% раствором бордосской жидкости. Для этого 100 граммов негашеной извести заливают в отдельной посуде 5 литрами воды; в другой (стеклянной) посуде растворяют 100 граммов медного купороса (тоже на 5 лит-ров воды). Затем раствор медного купороса при постоянном помешивании вливают в известковый. Опрыскивание растений бордосской жидкостью очень эффективно в дождливые годы.

Очень важно вовремя убрать с вегетирующих растений родливые плоды, появляющиеся в первой кисти, так как они задерживают рост остальных.

Плоды с растений собирают по мере поспевания. Очень «ажио не упустить сроки окончательной уборки -- плоды следует снять до того, как температура воздуха опустится ниже + 7...+ 8°.

1.3 Закаливание рассады

За полторы-две недели до предполагае-мого срока высадки рассаду начинают закаливать солнцем и ветром, т.е. постепенно приспосабливают к более суровым усло-виям жизни в открытом грунте. Закалива-ние вызывает дополнительный рост корней, увеличивает концентрацию клеточного сока, содержание сухих веществ, сахаров, аскорбиновой кислоты, уменьша-ет транспирацию, улучшает архитектони-ку рассады. Все это способствует лучшей адаптации растений к условиям открытого грунта, и увеличению раннего и общего урожая томатов.

Рассаду для закаливания начинают вы-носить на открытый воздух вначале на пол- часа в день, затем постепенно время закалки увеличивают до целого светового дня. В крайнем случае, световое закаливание можно вести и при пониженной тем-пературе, но не ниже 8 градусов. Если возникают затруднения с закаливанием днем, то закаливание ветром может вестись и ночью, но при температуре не ниже 2-3 градусов тепла.

При закаливании рассады в теплицах ус-танавливают температуру, влажность воз- духа и почвы, приближающиеся к режиму открытого грунта. Причем, производят это постепенно, используя искусственные воз- душные потоки с помощью вентиляторов, создавая скорость движения воздуха у вер-хушек растений около 1,5 м/с. Парники для закалки рассады днем просто открывают.

Кроме закалки вегетативной части рас- сады, надо провести закалку и их корне- вой системы. В теплицах и парниках, за две недели до предполагаемого срока выборки рассады, поливы резко снижают, а за не- делю до высадки прекращают полностью. Это значительно повышает холодостой-кость растений.

Если погода благоприятствует, то закалку можно начинать и раньше.

При выращивании рассады на балконах и лоджиях воздушную закалку можно вес-ти с помощью комнатного вентилятора или пылесоса, а вот с солнечной закалкой - сложнее. Дело в том, что стекло не про-пускает нужные для закалки ультрафиоле-товые лучи. Поэтому рамы необходимо держать открытыми даже при неблагопри-ятных погодных условиях и растения сдви-нуть там так, чтобы они имели возможность получать прямые солнечные лучи. Можно на период закалки вместо стекол устано-вить полиэтиленовую пленку, которая пропускает ультра-фиолетовые лучи.

При выращивании рассады в теплице, на балконе и лоджии определенные труд-ности возникают с поддержанием необхо-димой влажности воздуха, которая должна быть в пределах 60-65 процентов. Замер ведут спе-циальным влагомером, который обычно вмонтирован в измеритель атмосферного давления (барометр). Регулируют влажность воздуха за счет воздухообмена с наружным воздухом, используя вентилятор или пы-лесос. Дело в том, что избыток влаги в воз-духе, как и в почве, ведет к чрезмерному росту рассады.

За несколько дней до высадки рассаду подкармливают, обрабатывают стимулято-рами роста и фунгицидами.

Для подкормки рассады в 10л воды растворяют 10г карбамида, 40г суперфосфата, 30г сернокислого калия и подкармливают этим раствором 1-1,5 кв.м площади, занятой рассадой. Сразу же после подкормки рас-тения поливают, чтобы смыть с листьев остатки удобрений. Раствор микроудобре-ний добавляют непосредственно в раствор макроудобрений.

При появлении первых бутонов рассаду желательно опрыскать соответствующим стимулятором, из которых сейчас наибо-лее доступен «Гумат», при обработке ко-торым обеспечивается обильное цветение, увеличивается размер и ускоряется созре-вание плодов, повышается урожай. Повтор-ное опрыскивание производят через 10 дней. Для опрыскивания полчайной ложки (1,5г) порошка «Гумата» растворяют в небольшом количестве теплой нежесткой воды и объем доводят до 10л. Полезно, если предпосадочную подкормку макро- и микроудобрениями вести, приготовив их на растворе «Гумата».

1.4 Реакция адаптации корневых систем, воздействуя на них температурами закаливания

Адаптация растений к разным неблагоприятным факторам, в том числе и к низким температурам, связана с их переходом в качественно новое состояние стресса . При переходе в это состояние растению свойственно сильное торможение роста. Тем самым, при температурах закаливания корни растений имеют свойство быстро расти и потому не приобретают устойчивости к низким температурам . Если корни травянистых растений (гемикриптофитов) не приспосабливаются и отмораживаются, то такие растения теряют особенно много энергетических ресурсов и потому с трудом восстанавливаются. Также видим, что не приспособившиеся и интенсивно растущие корни не только сами не приобретают устойчивости к низким отрицательным температурам, но и могут забирать вещества у других частей растения, и таким образом понижать их устойчивость. Цель исследований - выяснить, как происходит реакция адаптаций к низким температурам по параметрам роста корней и их клеток у плевела многоцветкового , плевела многолетнего , овсяницы луговой и . Эти данные были получены при выращивании растений в гидропонной системе. При помощи морфофизиологических исследований роста в вегетационном режиме и в режимах закаливания оценены такие параметры: соотношение между относительными скоростями роста побегов и корней , скорость линейного роста придаточных корней . При помощи цитологических исследований линейного роста корней в разных режимах закаливания установлены параметры, предопределяющие линейный рост корней: скорость деления клеток, относительная скорость растяжения клеток , средняя длина полностью выросшей корневой клетки коры.

Результаты исследований показывают, что при температуре +20°С коэффициент для всех исследованных видов растений отличался незначительно и приближался к единице. Значит, при оптимальной температуре роста побегам и корням свойственен похожий рост и похожая интенсивность использования ассимилятов. При понижении же температуры до +8°С коэффициент у овсяницы луговой снизился больше, чем у плевелов и это показывает, что рост побегов и интенсивность использования ассимилятов были ниже по сравнению с корнями. Это показывает неполный рост побегов у овсяницы луговой по имеющимся температурным возможностям роста и количеству ассимилятов, полученных при фотосинтезе, и позволяет думать, что рост побегов замедляется при помощи эндогенного блокирования. Такое блокирование показывает, что побеги овсяницы при температуре +8°С уже находятся в состоянии стресса. Свойство побегов перейти в состояние стресса при более высокой температуре, чем это делают корни, должно определить их устойчивость при очень изменчивых температурах, которые характерны на поверхности земли. С другой стороны, блокировка роста побегов связана с направлением ресурсов в зимующие и более охраняемые подземные части - корни, т.е. по отношению к тепловому режиму в более стабильную подземную обстановку. Можно отметить, что в процессе закаливания растений при температуре +8°С у всех исследованных видов трав линейный рост придаточных корней и его характеризующие цитологические параметры сильно не отличались. Это показывает, что в корнях исследованных видов растений происходят одинаковые, обеспечивающие рост процессы, которые значительных качественных различий не имеют, и корни этих растений при температуре +8°С не находятся в состоянии стресса.

При снижении температуры с +8°С до 0°С для овсяницы луговой характерно увеличение коэффициента , т.е. рост корней и побегов, а также интенсивность использования ассимилятов в этих частях становится похожей. Эта схожесть определена тем, что у овсяницы луговой намного больше, чем у других исследуемых трав снизился рост придаточных корней, т.е. блокировался рост не только побегов, но и корней. Цитологические исследования показывают, что при понижении температуры от +8°С до +2°С рост корней у овсяницы луговой снизился намного больше, чем у других видов, из-за сильного уменьшения скорости деления клеток. У овсяницы луговой этот показатель снизился в 8 раз, а у плевела многоцветкового и плевела многолетнего - в 3,2 раза. Это показывает, что в меристеме овсяницы луговой происходят качественные изменения и при температуре +2°С корни уже находятся в состоянии стресса. Реакция зоны растяжения на закаливание совсем другая. Относительная скорость растяжения клеток , при понижении температуры для всех исследованных видов снизилась одинаково, но клетки выросли до почти такой же длины, как и при температуре +8°С . Видимо, низкие температуры не изменили клеточной программы растяжения, а только сделали растяжение более медленным. С другой стороны, у отдельных растений овсяницы луговой корни при температуре +2°С образуют укороченные и округленные клетки. Это явление требует дальнейших исследований. У корней овсяницы луговой и меристем, находящихся в состояний стресса, устойчивость к низким температурам должна значительно увеличиться. Состояние стресса корней должно влиять на лучшую выживаемость овсяницы луговой при низких температурах и их более раннюю сравнительно с плевелом весеннюю регенерацию (это подтверждают наблюдения селекционеров и замеченная ими разница при отрастании этих растений). Приспособившиеся корни овсяницы луговой и их меристемы не обмораживаются и остаются жизнеспособными, а находящиеся в них резервные вещества и их функции не изменившимися. Это позволяет растениям рано и быстро регенерировать весной. Не приспособившиеся корни плевела обмораживаются намного больше и растениям весной намного труднее регенерировать. Состояние корней может влиять на устойчивость побегов к холоду. У корней, находящихся в состоянии стресса, блокируется их рост, поэтому используется намного меньше ресурсов. Это положительно влияет на устойчивость побегов к холоду.

Овсяница луговая имеет более низкую кормовую ценность, чем плевел. С целью уменьшить этот недостаток овсяница скрещивалась с плевелом. Встаёт вопрос: показывают ли гибриды овсяницы луговой и плевела многоцветкового достаточную адаптационную реакцию, когда температура сигнализирует о приближающиеся зиме? Как показывают исследования ученых, эти гибриды по скорости роста растения при режимах закаливания более близки к плевелу многоцветковому, но их коэффициент К понизился и занял среднее положение между овсяницей луговой и плевелом многоцветковым. Потому можно говорить, что быстрый рост унаследован от плевела многоцветкового, а направление ассимилятов в корни больше, чем у плевела и частично получено от овсяницы луговой. Так что гибриды объединяют оба признака, что обуславливает большую массу корней, чем у родительских видов. Имея большую массу корней, имеет лучшую возможность восстановиться весной, особенно если часть корней повредил холод. По линейному росту придаточных корней и его характеризующим параметрами в режиме закаливания занимает промежуточное состояние, ближе к плевелу многоцветковому. Метод флуоресцентного дифференциального окрашивания хромосом показал, что большую часть генома составляет геном плевела многоцветкового, а генетический материал овсяницы луговой в дальнейших поколениях частично элиминируется . Поэтому можно говорить, что у большая часть определяющих рост генов унаследована от плевела. Именно они решают, что рост и её реакция на низкую температуру более похожи на плевела, чем на реакцию овсяницы. Наблюдая это, можно утверждать, что , которая более устойчива к холоду, чем плевел, также имеет лучшие по сравнению с ним характеристики роста.

Находятся ли корни в состоянии стресса, можно легко понять, осматривая макроскопическую величину - зону растяжения корней . Установлено, что при снижении температуры с +8°С до +2°С длина зоны растяжения, как у плевела, так и у, почти не меняется, а у овсяницы луговой зона растяжения значительно укорачивается и становится намного меньше, чем у плевела и. При понижении температуры длина полностью выросшей клетки почти не меняется, и длина зоны растяжения корней становится прямо пропорциональна скорости деления клеток и обратно пропорциональна относительной скорости растяжения клеток. При снижении температуры от +8°С до +2°С у овсяницы луговой относительная скорость растяжения клеток уменьшается сравнительно незначительно (снижение растяжения связано с температурой), а уменьшение скорости деления клеток является достаточно большим и обуславливается не только физико-химическим воздействием низкой температуры, но и качественной реакцией меристемы на этот стрессор. Таким образом, значительное снижение скорости деления клеток , которое проявляется у меристематических клеток корней овсяницы луговой в состоянии стресса, обуславливает укорачивание зоны растяжения корней. У других исследованных видов уменьшение и происходит только из-за прямого воздействия низкой температуры, поэтому изменения обоих показателей являются равноценными и компенсируют один другого, потому длина зоны растяжения почти не меняется. Так что укорачивание зоны растяжения является одним из маркёров стрессового состояния. Даже не производя цитилогического анализа, а только пользуясь макроскопическим параметром - длиной зоны растяжения, можно установить, находится ли растение в состоянии стресса и адаптируется ли оно. Надо отметить и практическую пользу этого фактора. Нахождение такого легко наблюдаемого признака, показывающего изменённое биологическое состояние растения, является наглядно полезным при работе с селекционным материалом травянистых растений. Именно оценка зоны растяжения позволила бы селекционерам прогнозировать устойчивость к холоду начального селекционного материала многолетних трав.

2. Холодостойкость растений

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько выше О 0С. Холодостойкость свойственна растениям умеренной полосы (ячмень, овес, лен, вика и др.). Тропические и субтропические растения повреждаются и отмирают при температурах от 0 до 10 0С (кофе, хлопчатник, огурец и др.). Для большинства же сельскохозяйственных растений низкие положительные температуры негубительны. Связано это с тем, что при охлаждении ферментативный аппарат растений не расстраивается, не снижается устойчивость к грибным заболеваниям и вообще не происходит заметных повреждений растений.
Степень холодостойкости разных растений неодинакова. Многие растения южных широт повреждаются холодом. При температуре 3 °С повреждаются огурец, хлопчатник, фасоль, кукуруза, баклажан. Устойчивость к холоду у сортов различна. Для характеристики холодостойкости растений используют понятие температурный минимум, при котором рост растений прекращается. Для большой группы сельскохозяйственных растений его величина составляет 4 °С. Однако многие растения имеют более высокое значение температурного минимума и соответственно они менее устойчивы к воздействию холода.

Накопление зеленой массы кукурузой не происходит при температуре ниже 10 оС. Устойчивость растений к холоду зависит от периода онтогенеза. Разные органы растений также различаются по устойчивости к холоду. Так, цветки растений более чувствительны, чем плоды и листья, а листья и корни чувствительнее стеблей. Наиболее холодостойкими являются растения раннего срока посева.

Для сравнения рассмотрим особенности прорастания малоустойчивой к холоду кукурузы. При температуре 18-20 оС всходы у кукурузы появляются на 4-й день, а при 10-12 "С - только на 12-й день. О холодостойкости растений косвенно можно судить по показателю суммы биологических температур. Чем меньше эта величина, тем быстрее растения созревают и тем выше их устойчивость к холоду. Показатели суммы биологических температур соответствуют скороспелости растений: очень раннеспелые имеют сумму биологических температур 1200 оС, раннеспелые - 1200-1600, среднераннеспелые - 1600 - 2200, среднеспелые - 2200 - 2800, среднепозднеспелые - 2800 - 3400, позднеспелые - 3400 - 4000 оС.
Физиолого-биохимические изменения у теплолюбивых растений при пониженных положительных температурах.

Повреждение растений холодом сопровождается потерей ими тургора и изменением окраски (из-за разрушения хлорофилла), что является следствием нарушения транспорта воды к транспирирующим органам. Кроме того, наблюдаются значительные нарушения физиологических функций, которые связаны с нарушением обмена нуклеиновых кислот и белков. Нарушается цепь ДНК -> РНК -> белок -> признак.

У некоторых видов растений наблюдаются усиление распада белков и накопление в тканях растворимых форм азота. Из-за изменения структуры митохондрий и пластид аэробное дыхание и фотосинтез снижаются. Деградация хлоропластов, разрушение нормальной структуры пигментно-липидного комплекса приводят к подавлению функции запасания энергии этими органоидами, что способствует нарушению энергетического обмена растения в целом. Основной причиной повреждающего действия низкой температуры на теплолюбивые растения является нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в состояние геля, а также общие изменения процессов обмена веществ. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (пада-
ет) осевой градиент потенциалов покоя (ПП), активный транспорт веществ против электрохимического градиента.

Изменение проницаемости мембран приводит к тому, что нарушаются поступление и транспорт веществ в растения и отток ассимилятов, токсичных веществ из клеток. Все эти изменения существенно снижают жизнеспособность растений и могут привести к их гибели. Кроме того, в этих условиях растения более подвержены действию болезней и вредителей, что также приводит к снижению качества и количества урожая.

Приспособление растений к низким положительным температурам.
У растений более холодостойких отмеченные нарушения выражены значительно слабее и не сопровождаются гибелью растения. Устойчивость к низким температурам - генетически детерминированный признак. Изменение уровня физиологических процессов и функций при действии низких положительных температур может служить диагностическим показателем при сравнительной оценке холодостойкости растений (видов, сортов). Холодостойкость растений определяется способностью растений сохранять нормальную структуру цитоплазмы, изменять обмен веществ в период охлаждения и последующего повышения температуры на достаточно высоком уровне.

Для оценки холодостойкости растений используют различные методы диагностики (прямые и косвенные). Это холодный метод проращивания семян, сверхранние посевы в сырую и непрогретую почву, учет интенсивности появления всходов, темпов роста, накопления массы, содержание хлорофилла, соотношение количества электролитов в надземной и подземной частях растения, оценка изменчивости изоферментного состава и др.

1. Минимальные температуры роста вегетативных и генеративных органов различных растений, оС

Способы повышения холодостойкости некоторых растений.
Холодостойкость некоторых теплолюбивых растений можно повысить закаливанием прорастающих семян и рассады, которое стимулирует защитно-приспособительную перестройку метаболизма растений. Наклюнувшиеся семена или рассаду теплолюбивых культур (огурец, томат, дыня и др.) в течение нескольких суток (до месяца) выдерживают при чередующихся (через 12 ч) переменных температурах: от 0 до 5 °С и при 15-20 оС. Холодостойкость ряда растений повышается при замачивании семян в 0,25%-ных растворах микроэлементов.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать