Активность карбоксипептидазы N и ангиотензинпревращающего фермента в сыворотке крови у онкологических больных при химиотерапевтическом воздействии
/b>1.2.3.1 Ангиотензинпревращающий фермент. Ангиотензинпревращающий фермент (КФ3.4.15.1, АПФ, ангиотензин - конвертирующий фермент, кининаза II, дипептидилкарбоксипептидаза I,) является ключевым ферментом, связывающим между собой ренин - ангиотензиновую и калликреин - кининовую системы. Фермент присутствует в плазме крови, нервных клетках, клетках почечных канальцев, сердечной мышце, матке, слюнных железах. Основная локализация в организме человека - эндотелий сосудистой стенки [3]. По структуре АПФ представляет собой гликопротеин, существующий в виде мембрано- связанной формы и являющийся интегральным белком. Молекула фермента, представляющая собой одну полипептидную цепь, локализована экстрацеллюлярно, гидрофобный трансмембранный участок включает 17 аминокислотных остатков и находится в положении 1230-1247, а внутриклеточный гидрофильный участок состоит из 30 остатков. Имеется и растворимая форма АПФ отличающаяся от мембраносвязанной отсутствием трансмембранного и внутриклеточного участков. Мембраносвязанная форма имеет молекулярную массу 170кДа и включает С- и- N-гомологичные домены, обладающие энзиматической активностью. Предполагается, что домены АПФ могут иметь разные функции в организме. Возможно, между N- и C-доменами имеется участок, доступный для ферментативного расщепления. Таким образом, N-домен может освобождаться или из находящегося в растворе полноразмерного фермента, или из мембраносвязанной формы, составляя С-домен на мембране [21]. В принципе такой процесс может происходить где угодно в организме. Вопрос о функциональной роли доменов до сих пор остается неясным. Однако полученные к настоящему времени данные об обнаружении эндогенных субстратов, специфичных для N-домена, и о разном взаимодействии ингибиторов АПФ с доменами, а также присутствие в организме однодоменных форм фермента свидетельствуют в пользу физиологической значимости доменов. Каждый из доменов содержит активный центр, которые отличаются по скорости гидролиза пептидов, по степени торможения специфичными ингибиторами АПФ [54,56].

АПФ - металлопротеиназа, которая содержит в активном центре ион цинка и активируется ионами Сl-, NO3- ,SO42-, ингибируется соединениями, содержащими SH-группу, хелаторами (ЭДТА, о-фенантролин), брадикининпотенциирующим фактором (Ki = 40 нм), 2-меркаптоэтанолом. Кроме того, существуют специфические ингибиторы АПФ - каптоприл (К = 20 нм), лизиноприл (К= 3-10 нм), и эналаприл (К =25-35 нм) [4,20].

рН-Оптимум действия АПФ составляет 7,2-7,6. Препараты АПФ, выделенные из различных органов человека (легких, сердца, печени, мозга, плазмы крови) существенно не различались по следующим физико-химическим параметрам: молекулярной массе, изоэлектрической точке, рН-оптимуму, константе ингибирования известными ингибиторами АПФ. При этом их иммунологические и каталитические свойства могут быть различными [21].

При действии на физиологические субстраты АПФ может вызывать либо превращение неактивной формы в активную, инактивацию биологически активного пептида, либо трансформацию его активности. Так, участвуя в отщеплении С-концевого гистидиллейцина от ангиотензина I, он превращает его в физиологически активный ангиотензин II, инактивирует брадикинин путем последовательного удаления двух С-концевых дипептидов, расщепляет такие функционально активные пептиды, как мет-энкефалин, нейротензин, эндорфин, вещество Р, (действуя в этих превращениях как эндопептидаза), играя роль одного из регулирующих факторов в обмене этих биологически активных веществ [20,36,41]. АПФ принимает участие в процессинге энкефалинов, гидролизуя энкефалинсодержащие пептиды - Met-энкефалин-Arg6-Phe7 в мет-энкефалин и Met-энкефалин- Arg 6-Glu7-Leu8 в Met-энкефалин-Arg6 [4].

АПФ является физиологическим регулятором концентрации в плазме пептида AcSDKP (N-AcSer-Asp-Lys-Pro), влияющего на пролиферацию гемопоэтических и других клеток.

Фермент участвует в регуляции артериального давления. Кроме того, он вовлечен в реализацию таких функций как репродуктивные процессы, защитные и иммунные реакции организма. Участие фермента в том или ином процессе определяется как его локализацией, так и особенностью действия на регуляторные пептиды [20,56]. Являясь фактором, связывающим ККС и РААС - систем, вовлеченных в регуляцию большинства функций организма, реагирует на изменения, возникающие при патологических процессах. В связи с этим представляет интерес изучение активности фермента у онкологических больных при химиотерапевтическом воздействии.

1.2.3.2 Карбоксипептидаза N. Карбоксипептидаза N (КФ 3.4.12.7. КП N, аргинин-карбоксипептидаза, кининаза I) обнаружена Erdos и соавт. в плазме крови человека в 1962 году. Названа так потому, что по свойствам и специфичности он близок к панкреатической карбоксипептидазе B, но отличается от нее тем, что не имеет неактивного предшественника. Относится к ферментам вневизикулярной локализации - внеклеточной жидкости и внешней поверхности цитоплазматических мембран. Фермент локализован в плазме крови, обнаружен в стенках кровеносных сосудов, слизистой оболочке носа, моче [13].

Фермент имеет Mr 280 кДа и состоит из четырёх субъединиц трёх типов: двух с Mr 88 кДа и по одной с Mr 55 кДа и 48 кДа. Субъединицы с Mr 88 кДа гликозилированы (на долю углеводов приходится 29% массы), не обладают ферментативной активностью и, по-видимому, стабилизируют фермент в плазме крови [61]. Субъединицы с Mr 48 кДа и 55 кДа обладают ферментативной активностью и не содержат в своём составе углеводных остатков [13,58].

КП N относится к металлокарбоксипептидазам. Активный центр фермента имеет форму кармана, в полости которого находится ион Zn2+. В цельной сыворотке крови человека фермент активируется ионами Co2+ и в меньшей степени Ni2+, инактивируется ионами тяжелых металлов, бензоилом-L-аргинином, и хелатными соединениями. Тормозящее действие ингибиторов КП N проявляется не только в опытах in vitro, но и in vivo. При внутривенном введении ингибитора (2-меркаптоэтанол, ЭДТА) усиливалось гипотензивное действие брадикинина. Каталитическая активность фермента оптимальна при pH 7,0 - 7,8, и зависит от природы буферной смеси. В фосфатном буфере максимум активности находится при pH 7,5; в зоне pH 7,0 - 6,0 наблюдается резкое падение активности; в трис-буфере pH - оптимум составляет 7,0. Фермент чувствителен к кислой среде. При pH среды 2,0 - 3,0 он инактивируется необратимо, а при pH 6,5 - 5,0 - обратимо. Трапезникова С.С. и Пасхина Т.С. провели работу по изучению свойств карбоксипептидазы N из сыворотки крови человека, очищенного в 273 раза. Полученные препараты, по данным ультрацентрифугирования, состояли из двух компонентов с константой седиментации 5,3S и 6,5S. Отмечена четко выраженная зависимость фермента от температуры: максимальная активность проявляется при 37°С, при 30°С она снижается наполовину. Лиофилизированные препараты сохраняют свою активность в течение 6 месяцев [4,13].

Помимо способности отщеплять С-концевой аргинин в брадикинине (истинная кининазная активность) и Met5-энкефалин-Arg6, лизин в Met5-энкефалина-Lys6, карбоксипептидаза N гидролизует более простые синтетические субстраты: гиппурил-L-аргинин, гиппурил-орнитин (пептидазная активность), а также расщепляет эфиры гиппурил-L-аргининовой кислоты [27]. При этом скорость расщепления субстратов, содержащих C-концевые остатки лизина в 5-6 раз выше, чем соответствующих пептидов с C-концевым аргинином. Скорость расщепления гиппурил-аргининовой кислоты в несколько раз выше, чем гиппурил-аргинина. Эстеразная активность фермента угнетается ионами тяжелых металлов, в особенности Cd2+ , а также аргининовой кислотой и ЭДТА [13].

Биологическая роль КП N во многом остаётся неясной. Инактивируя брадикинин, она способна вовлекаться в регуляцию артериального давления и тонуса кровеносных сосудов. Однако реальный вклад фермента в инактивацию брадикинина in vivo не превышает 10-12%. Некоторые авторы предполагают, что КПN может играть роль модулятора действия брадикинина [57,62].

Активность КПN изменяется при воспалительных и аллергических реакциях, так как подкисление реакции среды в тканях будет способствовать накоплению кининов из-за торможения кининазной активности фермента. Поскольку фермент расщепляет пептиды, участвующие в развитии воспалительных реакций (брадикинин и анафилотоксины), и его активность в крови снижается при введении рекомбинантного интерлейкина-1, вероятно, что КПN вовлекается в развитие воспалительных реакций [52,63].

Фермент участвует не только в процессинге энкефалинов, но и в их инактивации. Являясь основным ферментом ККС, он участвует в морфогенезе клеток, увеличении проницаемости сосудистой стенки, регуляции активности каскадных протеолитических систем плазмы крови: гемокоагуляции, фибринолиза, комплемента, развитии злокачественных новообразований [13,52].

Таким образом, КП N вносит вклад в регуляцию многих физиологических процессов и развитие патологических состояний. Поэтому, представляет интерес исследование активности фермента при онкологических заболеваниях в период химиотерапии.

1.3 Функционирование пептидергической системы при онкологических заболеваниях

Злокачественный рост характеризуется изменением активности и спектра ферментов. Ферментный спектр обусловлен локализацией, гистоцитогенезом и степенью дифференцировки опухоли. Если в дифференцированной опухоли ферменты соответствуют таковым данного органа или ткани, то при низкой степени дифференцировки активность и спектр ферментов значительно изменены. Большое значение придается ферментам в инвазии опухолевых клеток. В трансформированных клетках протеиназ синтезируется заметно больше, чем в нормальных клетках. При ряде злокачественных новообразований наблюдается выход пептидаз в межклеточное пространство и увеличение их активности. В сыворотке больных со злокачественными опухолями можно часто обнаружить увеличение активности одних ферментов и уменьшение других. Источником увеличения активности ферментов в сыворотке может являться усиленное выделение его опухолью в кровяное русло. При изучении локализации пептидазной активности в опухолях человека высокая пептидазная активность была выявлена в периферических отделах инвазивно растущих опухолей [19,26,27,41,59].

В процессе онкогенеза участвуют матриксные металлопротеазы (ММП). Транскрипция этих ферментов зависит от целого ряда факторов: цитокинов, факторов роста и некроза опухолей, химических агентов. Участие ММП в опухолевой трансформации, а также в процессах инвазии и метастазирования хорошо доказано in vitro и in vivo. Установлено, что экспрессия ММП коррелирует с деструктивными изменениями в матриксе и с туморогенным фенотипом клеток, а также зависит от вида опухоли и ткани. ММП могут участвовать в процессе канцерогенеза, воздействуя на различные пути передачи сигнала в клетке, основные компоненты соединительнотканного матрикса, на межклеточные взаимодействия, а также продуцируя различные биологически активные молекулы [35]. В опухолевых клетках может образовываться большое количество коллагеназы (представитель семейства ММП), мишенью действия которой является коллаген, представляющий собой барьер для распространения опухолевого процесса. Ингибитор её активности способен ограничивать инвазивность опухолевых клеток. Таким образом, коллагеназы ассоциированы с возникновением метастазирующего фенотипа клеток и играют ключевую роль в процессах инвазии и метастазирования. В процесс неопластической трансформации вовлечены лизосомные цистеиновые протеиназы. Ферменты деградируют многие белки и компоненты внеклеточного матрикса, осуществляют деструкцию ткани. Эти протеиназы осуществляют протеолиз короткоживущих белков, которые регулируют злокачественный рост [29,33,35,55,60].

При раке молочной железы, раке легкого и раке толстой кишки увеличенный уровень коллагеназы типа IV (матриксной металлопротеиназы типа 2, желатиназы A) - один из признаков высокого риска метастазов.

При раке мочевого пузыря повышение уровня коллагеназы типа IV в крови соответствует увеличению массы опухоли [33].

Многие опухоли характеризуются повышенной продукцией коллагеназы I типа, гидролизующей основные компоненты экстрацеллюлярного матрикса и соединительной ткани [35].

Отмечено изменение изоферментного спектра аминопептидазы. При раке легких исчезает изофермент I растворимой аминопептидазы. При злокачественных опухолях печени и желудка появляется новый пик активности фермента [18]. В лейкозных клетках, полученных от больных разными формами лимфопролиферативных заболеваний, обнаружены аминопептидазы по крайней мере двух видов: металло- и SH-зависимые ферменты. В кроветворных клетках была обнаружена аминопептидаза N, главным образом, в популяциях миелоидно-моноцитарного ряда, находящихся на разных стадиях дифференцировки, и рассматривалась как маркер этих клеток. Активность лейцил-аминопептидазы (ЛАП) усиливается в ранние сроки после наступления холестаза (механическая желтуха, вызванная злокачественными новообразованиями). Наибольшее усиление активности фермента при закупорке общего желчного протока опухолью, раке поджелудочной железы [1,8,12]. При новообразованиях печени, наблюдается увеличение активности лейцил-аминопептидазы сыворотки. В меньшей степени активность ЛАП увеличивается при метастатических поражениях печени. У 46 % больных с опухолями описано увеличение активности фермента в моче. Но его исследование не имеет диагностического значения при новообразованиях ротовой полости и области шеи [1,26].

На поздних стадиях рака легких может быть выявлено снижение активности АПФ[47,48].

При раке щитовидной железы (РЩЖ) в ткани (операционный материал) наблюдался значительный рост активности сериновых и цистеиновых протеолитических ферментов. Активность сериновых протеиназ при РЩЖ в 6 раз превышала таковую в контрольной ткани. Активность цистеиновых протеиназ при РЩЖ в 6 раз была выше, чем в контрольной ткани. Это послужило основанием для использования данных показателей как дополнительных критериев РЩЖ [35,39].

У женщин со II стадией злокачественного поражения эндометрия исследовалась пептидгидролазная активность сыворотки крови. Исследования, проведенные в разновозрастных группах доноров, не выявили достоверных изменений в активности изучаемых протеиназ. Активность трипсиноподобных протеиназ в сыворотке крови достоверно увеличивалась у онкобольных женщин и имела тенденцию к увеличению с возрастом. Активность лизосомных катепсиноподобных протеиназ в сыворотке крови онкологических больных в 2,5-2,7 раза выше по сравнению с аналогичными показателями здоровых женщин, что может свидетельствовать об инвазивной стадии данного процесса, который характеризуется нарушением целостности здоровой ткани и стабильности клеточных мембран. С другой стороны данный процесс может сопровождаться усилением биосинтеза изучаемых протеиназ или снижением биосинтеза их эндогенных ингибиторов [19,35].

В облученной опухолевой ткани при раке почки было обнаружено, повышение активности ингибиторов сериновых и цистеиновых протеиназ в 4 и 5,5 раз, и снижение ферментативной активности на 74% и 45% для сериновых и цистеиновых протеиназ, соответственно. При сопоставлении активности протеолиза в опухолевой ткани после лучевой терапии и в необлученной опухолевой ткани обнаружено снижение ферментативной активности сериновых и цистеиновых протеиназ. Их активность под влиянием лучевой терапии уменьшалась, составляя всего 7% и 20% от активности до облучения, и после облучения не изменялась, а активность ингибитора цистеиновых протеиназ - увеличивалась в 2 раза [35,59,60].

При злокачественных образованиях толстой кишки активность нейтральных и кислых протеиназ в опухолевой ткани в 1,76 - 2 раза выше, чем в неизмененной ткани кишки. После предоперационного облучения прямой кишки активность протеиназ в облученной опухоли оказывается в 2,8 - 3,58 раза ниже, чем в опухоли не подвергнутой облучению [1,11].

В сыворотке крови онкологических больных (рак легкого, рак молочной железы) исследовали некоторые компоненты калликреин-кининовой системы, а также активность "нейтральных" и "кислых" протеаз и их ингибиторов до и после терапевтического нейтронного облучения. Исследования показали, что предоперационное облучение быстрыми нейтронами на область первичного очага тормозит процессы кининообразования в крови онкологических больных: на 20% снижается уровень калликреина на фоне увеличения содержания неактивного профермента. Общая активность сериновых протеиназ остается неизменной, однако отмечается уменьшение концентрации основного ингибитора калликреина - a2-макроглобулина. На этом фоне повышается активность кининоразрушающего фермента карбоксипептидазы N. Вместе с тем, активность "нейтральных" и "кислых" протеаз после облучения имеет четко выраженную тенденцию к уменьшению, а уровень общей антипротеолитической активности остается практически неизменным. При этом отмечается стабилизация состояния клеточных мембран. Между степенью торможения образования протеолитических ферментов и клинически определяемой регрессией размеров опухоли существует достоверная корреляционная зависимость [35,62].

1.4 Роль оксида азота (II) в онкогенезе

Оксид азота II обладает мультипотентными свойствами, определяемые как цитотоксичностью радикала, так и его коммуникативной активностью. При онкологических заболеваниях эта молекула может проявлять и противоопухолевые свойства, и участвовать в патогенезе неоплазий. NO необходим для обеспечения цитотоксического действия макрофагов на опухолевые клетки [23,42]. Выделяемый макрофагами, NO подавляет опухолевые клетки либо блокируя их железосодержащие ферменты, либо повреждая их клеточные структуры. Вызывая повреждение ДНК, NO включается в модуляцию апоптоза: активирует экспрессию p53, который вызывает задержку деления клеток в фазе G1. В то же время p53 по принципу обратной отрицательной связи подавляет синтез iNOS и таким образом предохраняет трансформированные клетки от гибели. Установлено, что синтез iNOS индуцируется TNFa. Уже через 6 - 12 ч. после действия индуктора NO достигает уровня, при котором начинает сказываться его влияние на опухолевые клетки [24,28]. NO участвует в образовании новых сосудов, что необходимо для удовлетворения потребностей раковых клеток в питании. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. NO, выделяемая эндотелиальными или опухолевыми клетками, может стимулировать процесс инвазии в стенку сосуда, поскольку прикрепление к эндотелию сосудов необходимое звено метастазирования. Радикал обладает дезагрергирующим действием. Поэтому следует ожидать, что усиленный синтез NO подавляет межклеточное сцепление клеток в опухоли и облегчает их распространение по организму. Клеткам с минимальной продукцией NO будет труднее отделяться от первичной опухоли и образовывать метастазы. [42].

Таким образом, существуют механизмы поддерживающие баланс между участием NO как в прометастатических, так и в антиопухолевых реакциях [42].

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать