Как ведут себя макросистемы вдали от равновесия? Пояснение принципа локального равновесия

Как ведут себя макросистемы вдали от равновесия? Пояснение принципа локального равновесия

Томский межвузовский центр дистанционного образования

Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Контрольная работа №3

По дисциплине «Концепция современного естествознания»

последние 2 цифры пароля:07

Выполнила

Студентка гр.З-828-Б

Специальности 080105

Афонина Юлия Владимировна

24 января 2008 г.

Г. Нефтеюганск

1. Как ведут себя макросистемы вдали от равновесия? Поясните принцип локального равновесия

Положению равновесия с молекулярно-кинетической точки зрения отвечает состояние максимального хаоса в изолированной системе. По законам термодинамики такая система вернется в положение равновесия; при удалении от него ее состояние становится все более неустойчивым, и даже малые изменения какого-либо параметра могут перевести систему в новое состояние. Необходимо обобщение теории на необратимые процессы и на открытые системы, которые могут обмениваться с окружающей средой веществом или энергией. Таких обобщений требовала и развивающаяся техника, и многочисленные приложения в физике, химии, биологии.

Понятие локального равновесия вводят при медленном изменении внешнего воздействия и для времени, большего характерного времени элементарного релаксационного процесса, формирующего равновесие. Эти условия -- из статистического рассмотрения процессов. Принцип локального равновесия ограничивает число систем, доступных термодинамическому рассмотрению. Есть также взаимное влияние друг на друга одновременно происходящих необратимых процессов. Существует принцип симметрии Кюри, который в формулировке Вейля гласит: «Если условия, однозначно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действия не нарушит эту симметрию». Поэтому формально все неравновесные процессы разделяют на скалярные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с этим принципом величины разных размерностей не могут быть связаны друг с другом. И скалярная величина (химическое сродство) не может вызвать векторный поток (теплопроводность).

Сложные системы в отличие от простых, описываемых несколькими параметрами, состоят из большого числа переменных и большого числа связей между ними. В сложной системе появляется из-за внутренних взаимодействий много свойств, которых нет у ее частей (эмерджентные свойства), они -- следствие целостности системы. На пути любой достаточно сложной системы к равновесию, которое характеризуется максимумом энтропии, встречаются обстоятельства, не позволяющие это сделать. В качестве таковых выступают граничные условия. Если они постоянны, например, поддерживаютна границах, то переменные состояния стремятся асимптотически к независимым от времени величинам, достигая квазистационарного или стационарного состояния.

Принцип локального равновесия и теорема о минимуме производства энтропии в равновесных состояниях были положены в основу термодинамики необратимых процессов.

Приведем классификацию неравновесных макросистем по Пригожину. В линейной неравновесной термодинамике достаточно близкими к равновесным являются локально равновесные системы или равновесные в некотором локальном «элементарном» объеме V. Только в этом объеме соблюдаются равновесные термодинамические законы. Отсюда следует, что в пространстве системы все основные термодинамические переменные будут зависеть от времени t и пространственной координаты х. В термодинамике это температура T(x, t), давление P(x, t), химический потенциал (x, t) и экстенсивные переменные плотности энтропии (x, t), плотности энергии u(x, t), число молей некоего компонента n(x, t) в единичном объеме. В экономике это могут быть заработная плата, цены, тарифы, денежные, товарные и людские ресурсы (потоки) соответственно. И единичными могут быть некая площадь или масса.

В этом случае для единичных объемов (т. е. в каждой точке х в любое t) справедливо соотношение Гиббса

dU = Tds - Pdv +

Локальные объемы могут взаимодействовать с разными параметрами состояния.

Исходя из статистической механики, равновесие определяет распределение Максвелла по скоростям и при взаимодействии локальных объемов (не каждого) происходят химические реакции, а значит отклонения от равновесия, но скорость возвращения в него достаточно велика, что и позволяет сохранить локальность. Однако при этом должны быть наложены некоторые ограничения на молярную плотность и однородность элементарного объема.

Известно, что для небольших отклонений от равновесия соблюдается феноменологическое соотношение между потоками и силами. Пусть ? = k для тепловых потоков, тогда

Jk = LkjFj

Если учесть соотношение взаимности Онзагера Ljk = Lkj, то формула

? = LjkFjFk > 0

определяет устойчивость систем данного вида неравновесности.

При этом необходимо помнить, что в связи с неравновесностью какие-то силы поддерживают потоки постоянными, а какие-то сводят их к нулю.

В термодинамике это, например, некая утечка тепла при отсутствии потока вещества, в экономике -- небольшая постоянная инфляция при стабильных ценах на определяющие товары.

При этом стационарность, т. е. постоянство утечки какого-либо вещества или энергии, обеспечивает минимум производства энтропии.

Однако часто эти линейные феноменологические соотношения не выполняются и микрообъемы могут вести себя колебательно и, далее, хаотически.

Но начнем со стационарной неравновесности, при которой (в термодинамике) потоки энергии и вещества Jk не обращаются в нуль. Отсюда первая вариация энтропии S не обращается в нуль, а значит существует вторая 2S и со своими знаками.

Пригожиным предложено в таких неравновесных системах пользоваться критерием Ляпунова, который говорит о том, что если возмущенное движение отличается от невозмущенного на некоторую малую положительную величину и она при этом уменьшается или не выходит за рамки наперед заданной величины, то это движение устойчиво. Пригожин предложил в качестве «функционала» Ляпунова использовать 2S, или «избыточное производство энтропии»:

= > 0

Если неравенство выполняется, то такое стационарное состояние устойчиво. Однако и здесь есть ограничения. Они касаются флуктуаций. Это могут быть неоднородности, дефекты или любые случайные факторы. В экономике это могут быть меняющиеся условия в бизнесе, частая смена законодательства и пр. При наличии значительных флуктуаций в неравновесных системах возможно непредсказуемое поведение («дуалистическое»). Часто поведение таких систем при определенных условиях становится упорядоченным в пространстве и времени. Это свойство неравновесных систем переходить в упорядоченное состояние через флуктуации или «порядок через флуктуации» И. Пригожин определил как фундаментальное.

В термодинамике исследован ряд устойчивых организованных структур: ячейки Бенара, слои Жаботинского. Они названы Пригожиным диссипативными. Макросистемные модели такого типа могут быть использованы в экономике переходного периода при больших необратимых потоках. Например, при разработке стратегий безопасности, антикризисных программ и в бурно развивающихся регионах и отраслях.

Главными являются вопросы, как поддерживать систему вдали от равновесия и при каких флуктуациях она переходит в новые состояния.

В общем виде движение или развитие системы можно записать как

= Zk(Xi, ?),

где Хk -- параметры состояния системы; k = 1, 2, ..., n; ? -- параметр, позволяющий поддерживать систему вдали от равновесия. Множественность решения этого уравнения является одним из условий, приводящим к неустойчивости, диссипативным структурам, бифуркации.

Таким образом, по Пригожину, можно выделить три варианта неравновесных моделей: локально равновесные, стационарно неравновесные и флуктуационно-диссипативные.

2. Какие этапы можно выделить в развитии самоорганизующейся системы

Самоорганизация -- спонтанное образование высоко-упорядоченных структур из зародышей или даже из хаоса, спонтанный переход от неупорядоченного состояния к упорядоченному за счет совместного, кооперативного (синхронного) действия многих подсистем. Хаотическое состояние содержит в себе неопределенность -- вероятность и случайность, которые описываются при помощи понятий «информация» и «энтропия». После изучения случайности Хакен рассмотрел необходимости и получил детерминированные уравнения движения. При этом главными оказываются выбор равновесных мод и исследование их устойчивости. Случайное событие вызывает неустойчивость,а это -- толчок для возникновения новых конфигураций (мод). Зародышем самоорганизации служит «вероятность»; упорядоченность возникает через флуктуации, устойчивость через неустойчивость. В предисловии к своей книге «Синергетика» Ха-кен пишет: «Я назвал новую дисциплину «синергетикой» не только потому, что в ней исследуется совместное действие многих элементов систем, но и потому, что для нахождения общих принципов, управляющих самоорганизацией, необходимо кооперирование многих различных дисциплин».

Суммарное уменьшение энтропии в открытых системах при определенных условиях за счет обмена потоками с внешней средой может превысить ее внутреннее производство. Появляется неустойчивость предшествующего неупорядоченного однородного состояния, возникают и могут возрасти до макроскопического уровня крупномасштабные флуктуации. Из хаоса могут возникнуть структуры, которые начнут переходить во все более упорядоченные. Эти структуры образуются за счет внутренней перестройки системы, поэтому это явление получило название самоорганизации. При этом энтропия, отнесенная к тому же значению энергии, убывает. Пригожин назвал упорядоченные образования, возникающие в диссипативных системах в ходе неравновесных необратимых процессов, диссипативными структурами (от лат. dissipatio -- разгонять, рассеивать). Считается, что эти структуры летучие и возникают при рассеянии свободной энергии в неустойчивых открытых системах.

Мир живого -- самоорганизующийся. Подобно тому как биосфера -- самоорганизующая целостность, таковы и все ее уровни. Для животного мира формой организации является стадо. Социальное поведение животных -- это эволюционный механизм, определяемый преимуществами общественной жизни. Постепенно потребность в обеспечении безопасности у животных становилась высшей потребностью, сформировала соответствующие инстинкты. Сначала была анонимная стая, потом появилась безличная затем личная семья. Этология (от греч. этос -- поведение, характер, нрав) -- наука о поведении животных -- показывает, что в животном мире есть общественная жизнь с эмоциями и чувствами. К. Фриш экспериментировал с пчелами, а К.Лоренц и Н.Тинберген изучали более сложное поведение многих видов птиц, рыб, млекопитающих и насекомых.

3. Какие системы могут находиться в высокоупорядоченном состоянии? Каковы необходимые условия возникновения самоорганизации и существуют ли достаточные? Объясните, почему информированность, важное свойство самоорганизации

Живая клетка -- это элементарная организованная часть живой материи и сложная высокоупорядоченная система. Опытным путем установлено, что в ней непрерывно совершаются синтез крупных молекул из мелких и простых -- анаболические (от греч. anabole -- подъем) реакции, на которые затрачивается энергия, и их распад -- катаболические (от греч. katabole -- сбрасывание вниз) реакции.

Установлено, что в клетке непрерывно совершается синтез крупных молекул из мелких и простых (анаболические реакции, на которые тратится энергия) и их распад (катаболичес-кие реакции). Совокупность их в клетке есть процесс метаболизма. Особи, изучаемые на этом уровне, не существуют абсолютно изолированно в природе, они объединены на более высоком уровне организации -- на уровне популяции.

Эволюцию на молекулярном уровне позволяет проследить сопоставление однотипных белков разных видов организмов, можно построить и эволюционное древо на основе состава белка. Различие может быть связано с естественным отбором, но отбор определяется биологическими функциями белков, фенотипами. Однако не всегда однозначна связь «текста» первичной структуры цепи и пространственного строения белковой глобулы с биологической функцией белка. Не все мутации белков ведут к изменению их функций, часть их оказывается нейтральной. По теории нейтралистской молекулярной эволюции японского генетика М. Кимуры (1968) скорость эволюции белка не зависит от размера популяции, причем активная часть цепи эволюционировала медленнее, чем ее «каркас». Скорость эволюции белка за год он выражал отношением числа замещенных аминокислотных остатков к одному остатку. Она оказалась постоянной для разных линий эволюции при сохранении функций и пространственной структуры молекулы. Величины скоростей замещений были меньше 10-9. Значит, время существования Вселенной недостаточно для построения макромолекул, если бы положение каждого звена фиксировалось отбором.

Выводы Кимуры об эволюции белков и нуклеиновых кислот не следует распространять на естественный отбор, относящийся к организмам. Нейтральность мутаций в «каркасе» белка во многом предопределена его строением и кодированием. Эволюция макромолекул отличается от эволюционного поведения организмов. Гомеостаз ведет к тому, что многие вредные мутации ведут себя как нейтральные. Например, одна из мутаций ухудшила свойства белка-фермента, и он стал перерабатывать субстрат медленней. Тогда организм исправит ситуацию каким-то способом, может быть, увеличит количество этого ослабленного фермента.

Математические модели могут изменить представление биологов об истоках упорядоченности в эволюции. Ведь все живые организмы являются строго упорядоченными системами. Они обладают сложными структурами, которые поддерживали и воспроизводили себя благодаря слабо выраженному взаимодействию химических и поведенческих процессов.

4. Опишите процессы возникновения биосферы, химической эволюции преджизненных форм

Существенно изменяется биосфера из-за быстрого развития жизни и «кислородной революции». Произошел переход от прокариотов к эукариотам. В начале палеозоя живое вещество переходит на сушу, занимая области с влажным климатом, формируя наземные флору и фауну. Масса живой материи резко растет, жизнь проникает и в более глубокие области океанов. Меняется качественный состав живого, организмы начинают усваивать минеральные вещества для формирования своего скелета. Развивающаяся жизнь меняет и мир вокруг себя. Морская вода становится все более хлоридно-сульфатной, такие элементы, как Fe, Mn, P, Co, Va, Си, стали существовать в виде малорастворимых, сильно окисленных соединений, и концентрация их в морской воде резко упала. Обилие кислорода снизило подвижность Fe, Mn, P, Va, Cr, Co, Cu, Ni и др., они оказались только в виде взвесей, поэтому их залежи могут быть вблизи берегов моря. На суше процесс накопления солей происходил периодически. В океанах формировались битуминозные глины, горючие сланцы, а на суше угли.

Для образования углей более подходящими были каменноугольный и пермский периоды, а после ослабевания процесса в триасе -- юрский, меловой и палеогенный периоды. Организмы стали использовать для образования скелетов СаС03 и Si02, что сделало состав морской воды щелочным. Начали осаждаться фосфориты, что привело к появлению их месторождений. Так, под влиянием живого вещества океан стал иным, и осадочные породы из закисно-окисных стали углисто-карбонатно-галогенными. Эволюция Земли как планеты и эволюция живого на ней были взаимосвязаны и взаимозависимы. На весь ход миграции химических элементов в верхних оболочках Земли все сильнее -- и прямо, и косвенно -- влияло живое вещество биосферы.

Изменение облика нашей планеты можно оценить при изменении масштаба восприятия. Для наглядности геолог и путешественник князь П.Н.Кропоткин создал «сценарий» такого «фильма», когда каждая секунда экранного времени соответствует миллиону лет жизни Земли. Первые 2 -- 3 мин идут «кадры» сотворения мира: из сгустка космической пыли, газа и обломков погибших миров формируется шарообразное тело планеты. Следующие 40 мин «фильма» -- рассказ о древнейшем этапе геологической истории (архейская эра), Земля обрела первичную атмосферу, на ней появилась жизнь. Но развивалась жизнь очень вяло, и почти ничего не изменилось за 2 млрд лет, или 33,3 мин. Только в протерозое всего за 17 мин (1 млрд лет) растительность распространилась из океанов на прибрежные участки суши; появились черви, моллюски, трилобиты. Все развитие жизни (фанерозой) промелькнет за 10 мин -- «кадры» будут меняться с огромной скоростью, будут меняться контуры материков, растительность, рельеф, виды животных и т.д. Меняются физические поля и атмосфера. И из этих 10 мин история человека займет лишь 2 с.

Химическая эволюция континентальной части земной коры проходила от основного, базальтового состава, характерного для океанического типа коры, к кислому, гранитному, и океаническая кора постепенно (примерно 2,5 млрд лет назад) превратилась в континентальную. Этому способствовало несколько факторов:

при формировании ядра планеты в одном из полушарий выделилось больше базальтов;

состав продуктов извержения вулканов менялся, изменяя толщину континентальной коры. Базальтовые магмы обогащались SiO2, А12O3, Fe2O3, Na2O, соответственно уменьшая долю MgO, FeO, CaO;

начался мощный круговорот веществ, включающий переработку первичной коры под действием солнечной энергии, гравитации и всей биосферы (рис. 10.4, а).

Огромные массы земной континентальной коры прошли через состояние осадочных пород, были перемыты водой и изменились под действием многих компонент. Длительный круговорот воды вымывал из коры некоторые базальтовые элементы (наиболее растворимые Са++, Mg++, Fe++), сохраняя малоподвижные типа SiO2, А12O3. Натрий попадал в океан в большом количестве, находился там в растворенном виде, но его значительная часть возвращалась в континентальную кору в виде осадков. Калий задерживался в тонкодисперсных глинах и растительных остатках, поэтому его больше в континентальной коре, чем в океанической (рис. 1).

В лабораторных условиях моделировали глобальные изменения только последнего геологического периода. Для изучения взаимодействия пар земных слоев изготовили двухслойные модели: лист резины толщиной 1,5 см залили тонким слоем (3--4 мм) легкоплавкого материала (воска или парафина), сцепляющегося с резиной. После остывания модели растянули домкратами. В верхнем слое резины появилась сеть трещин и возникла блоковая структура, характерная для верхнего слоя земной коры. При сильном измельчении от подложки отслоились мельчайшие «блоки», и дробление прекращали. Так проверили идею Вернадского об определенной организованности процессов в земной коре и энергонасыщенности геологической среды.

Гипотезу дрейфа континентов развивал немецкий ученый А. Вегенер (1912), хотя она казалась необоснованной. Сходство очертаний западного берега Африки и восточного берега Южной Америки издавна считали свидетельством разделения единого материка.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать