Карстовые процессы
p align="left">В РФ карстовые процессы широко развиты в Архангельской, Ленинградской, Московской, Тульской, Курской, Нижегородской, Воронежской областях, республиках Башкортостан, Татарстан, Марий-Эл, Мордовия, Пермской, Самарской и Свердловской областях.

Повышенная опасность возникновения чрезвычайных ситуаций, вызванных активизацией карстовых процессов, характерна для урбанизированных территорий, испытывающих техногенное подтопление. По прогнозам МЧС России в 2005 году опасность проявления карстовых процессов высока в г. Москва, Казань, Уфа, Самара, Пермь,. Нижний Новгород, Дзержинск, Стерлитамак, Соликамск, Павлово и Кунгур, причем их активизация вызывается, как правило, несоблюдением норм строительства и эксплуатации городских подземных коммуникаций, а также нерациональной подземной разработкой полезных ископаемых.

Изучением карстово-суффозионных явлений занимается экогидрогеофизика.

Для изучения устойчивости геологической среды перед геофизикой ставятся следующие задачи:

· Выделение регионов, где встречаются растворимые породы, оценка литологии и мощности перекрывающих пород, самих карстующихся пород и глубины залегания базиса коррозии, т.е. поверхности скальных пород, ниже которой нет закарстованности.

· Изучение гидрогеологических условий: наличия водоносных и водоупорных пород, пластовых и трещинно-карстовых вод, их минерализации, динамики (скоростей движения и фильтрации).

· Выявление трещинно-карстовых зон, отдельных карстовых форм, полостей и т.п.

· Оценка динамики карстово-суффозионных процессов и устойчивости закарстованных территорий.

Возможность решения поставленных задач геофизическими методами определяется различием геофизических свойств закарстованных скальных пород по сравнению с теми же породами, но не затронутыми карстовыми процессами (ниже базиса коррозии), и перекрывающими, как правило, песчано-глинистыми породами. Закарстованные породы, несмотря на наличие в них полостей, заполненных воздухом, отличаются, тем не менее, пониженными удельными электрическими сопротивлениями и скоростями распространения упругих волн, существованием аномалий естественного электрического поля, повышением гамма-активности. Это объясняется наличием в них глинистых пород и трещинно-карстовых подземных вод, характеризующихся пониженными удельными электрическими сопротивлениями, а часто и скоростями упругих волн. Глинистые породы повышают гамма-активность, измеряемую при гамма-съемках, а трещиноватые - альфа-активность, измеряемую при эманационной (радоновой) съемке.

Решение первой задачи производится геофизическими методами, используемыми для картирования. В условиях круто слоистых сред применяются методы гравиразведки, магниторазведки, электромагнитного профилирования (методами естественного поля (ЕП), сопротивлений (ЭП), низкочастотного (НЧП) и высокочастотного (РВП)), гамма- и эманационные съемки. В условиях горизонтально и полого залегающих пород используются электромагнитные зондирования (вертикальные (ВЭЗ), частотные (ЧЗ) или становлением поля (ЗС) или другие), а также сейсморазведка методом преломленных (МПВ) и отраженных (МОВ) волн.

Решение задач также проводится одиночными или режимными электромагнитными профилированиями, сейсморазведкой МПВ. С помощью скважинных геофизических исследований изучаются физические свойства горных пород вокруг скважин и между скважинами, определяются скорости движения и фильтрации подземных вод. Применение не менее двух методов, например одного электроразведочного и одного сейсмического, может дать более достоверное решение поставленных задач.

В качестве примера эффективности скважинных геофизических исследований при изучении карстово-суффозионных процессов можно привести результаты режимных наблюдений на территории г. Москвы, проведенные в рамках Программы мониторинга геоэкологических процессов в городе Москве на 2004-2005 год. Рассмотрим эту программу поподробнее.

Многолетнее хозяйственное освоение территории города Москвы существенно изменило гидрогеологические условия и вызвало активизацию неблагоприятных геологических процессов, нарушающих экологическую устойчивость окружающей среды города. Суммарная площадь карстово-суффозионных участков на территории города составляет 15 квадратных километров.

Многослойное строение толщи пород в верхах зоны пресных вод, ее малая мощность и отсутствие сдерживающих глинистых слоев в кровле карстующихся пород в пределах приречной части городской территории определяют необходимость ведения наблюдений за оползневыми и карстовыми процессами в долинном комплексе реки Москвы и некоторых ее притоков при приоритете организации стационарных инструментальных наблюдений на участках проявления активных глубоких оползней, а также участках с поверхностными формами проявления карста.

Многолетний (с 1974 года) опыт наблюдений за карстовым процессом показал, что большое практическое значение для прогнозирования возможных провалов имеют топографо-геодезические измерения оседания поверхности и визуальные наблюдения за деформациями зданий и земной поверхности.

Таким образом, развитие опасных процессов в геологической среде города нуждается в постоянном мониторинге.

Для организации мониторинга изучения и прогнозирования карстово-суффозионных процессов спроектирована новая сеть, которая включает 16 кустов ярусно расположенных скважин (по 3 скважины в кусте) и 11 одиночных скважин. Необходимость создания новой сети связана с особыми требованиями к зоне их размещения и характеристикам скважин по глубине. Расположение скважин ориентируется на участки нахождения переуглубленных долин, глубина составляет порядка 100 м.

Перечень измеряемых параметров и периодичность наблюдений для мониторинга карстово-суффозионных процессов включает такие параметры как уровни, температура, Ca, Mg, Na+K, HCO3, SO4, Cl, CO2(своб.), O2, pH, общая минерализация, общая жесткость, углекислотная и сульфатная агрессивность, Sr, органолептические свойства, микробиологический состав, гелиевая съемка.

Интересным также при изучении и контроле карстовых процессов является опыт создания геоинформационной системы (ГИС).

Геоинформационные системы с каждым годом приобретают все более важное значение для географической науки. Это объясняется простотой использования данных технологий и нарастающей многофункциональностью создаваемых систем.

Применение геоинформационных систем, позволяет избежать некоторых недостатков, ранее используемых количественных методов. Они, в частности, дают возможность значительно сэкономить время проведения исследований, позволяют избавиться от ошибок, связанных со сложными расчетами, а самое главное, - быстро и качественно визуализировать полученные результаты, воплотив их в тематическую географическую карту, график, или же представив цифровую информацию в виде результирующих таблиц.

Использование ГИС-систем в изучении карста, - дело относительно новое, хотя уже имеются некоторые наработки. Основным недостатком этих работ является использование стандартных «фабричных» ГИС, страдающих шаблонностью, так как при разработке первых систем, основной упор делался именно на модульность оболочки. Разумеется, эти ГИС позволяют производить весьма качественный материал, но стоит учитывать тот факт, что они не предназначены для изучения конкретной территории и конкретного процесса.

Основные составляющие ГИС - это тематическая и функциональная часть.

Тематическую часть можно подразделить на основные тематические базы данных и сопутствующие. Для предлагаемой системы основными тематическими базами будут являться те данные, которые соответствуют цифровой проекции условий карстообразования, - то есть генетическим факторам. Сопутствующие базы данных отображают факторы, влияющие на протекание карстового процесса.

Функциональная основа представляет собой машинную реализацию модели процесса, со всеми алгоритмами и функциями. В функциональную часть также входит топографическая основа.

Топографическая основа для ГИС-систем является важнейшей составляющей, на которую может накладываться любой изучаемый процесс или объект, и само существование ГИС обусловлено наличием топографической основы, как элемента создаваемого электронного географического пространства.

Как для любого из экзогенных процессов, для карста существуют необходимые условия его возникновения в случае, если они обладают категорией «достаточности». В связи с этим, методологической основой для разработки тематической базы «ГИС-Карст» являются представления Д.С. Соколова Соколов Д.С. Основные условия развития карста. - М.: Госгеолтехиздат, 1962. Стр. 269. о четырех основных условиях развития карста. (Наличие: 1 - карстующихся пород, 2 - их водопроницаемости, 3 - движущихся вод, 4 - и их агрессивности по отношению к вмещающим породам.)

Являясь, по сути, абстрактными понятиями, основные условия объективизируются конкретными факторами природной среды. Однако, из всего многообразия факторов, представляющих то или иное условие, необходимо выделить ведущие или определяющие факторы, которые должны отвечать следующим требованиям: оцениваться количественными параметрами, учитывать основные свойства условия и выражаться на площади, то есть предоставлять возможность картографирования объектов.

Ведущие факторы, отражая пространственную и временную изменчивость карстовой среды, могут являться основой инженерно-геологических, гидрогеологических и других оценок и прогнозов. В этом заключается возможность создания в функциональной части ГИС оценочно-прогнозного или управляющего блока.

Факторы, отражающие первое условие развития карста, - наличие растворимых пород, - объединяются в геологической базе данных, в которую входит:

· Распространение карстующихся пород по площади и в разрезе.

Основное внимание уделяется сочетаниям карстующихся и некарстующихся пород. В электронно-картографической части строятся геологические карты и разрезы.

· Мощность карстующихся пород.

От мощности зависит развитие глубинного карста;

· Дислоцированность и неотектонический режим карстовых массивов, которые определяют, при достаточной мощности известняков, размеры карстовых пещерных и гидрогеологических систем;

· Литологические особенности карстующихся и некарстующихся пород развитых в регионе;

· Химический состав горных пород.

От чистоты известняков зависит степень их карстуемости, а от наличия некарстующихся пород, возможность поступления концентрированного поверхностного стока из области их развития. Создаются литологические карты и база данных химических анализов карстующихся пород.

Второе условие - наличие водопроницаемости карстующихся пород представлено геолого-структурной и тектонической базой данных. Сюда входят следующие факторы:

1. Условия залегания пород.

При достаточных углах падения пород межпластовые трещины становятся водопоглощающими;

2. Тектоническая трещиноватость.

3. Литогенетическая трещиноватость и трещины коры выветривания.

4. Тектонические разрывы различного ранга.

Строятся тектонические и геолого-структурные карты, локализованные диаграммы - розы трещиноватости и др.

5. Типы карстовых коллекторов: поровый, трещинно-карстовый, карстовый и др.

Третье и четвертое условие, - наличие движущихся агрессивных вод, объединяются в гидролого-гидрогеологическую базу данных:

1. Инфильтрационные воды.

2. Инфлюационные воды.

3. Конденсация в карстовых и трещинно-карстовых коллекторах.

4. Гидрологические данные, характеризующие поверхностный и подземный сток - слой стока, норма стока, коэффициент стока, модуль стока, водный баланс и др. Строятся гидрологические и гидрогеологические карты, микроклиматические базы данных и др.

5. Структурные условия карстовых массивов.

6. Геоструктурная позиция закарстованных территорий определяет формирование гидрогеологических бассейнов и массивов карстовых вод Дублянский В.Н., Кикнадзе Т.З. Гидрогеология карста Альпийской складчатой области юга СССР. - Наука, 1984. Стр. 255., их границы, поверхностные и подземные водосборы, гидрогеологическую зональность и скорости фильтрации карстовых вод.

7. Режим карстовых вод.

8. Разгрузка карстовых вод: переток в соседние водоносные системы, карстовые источники, субмаринная и русловая разгрузка.

9. Минерализация карстовых вод.

10. Химический состав и карбонатная емкость для известнякового карста.

11. pH и минерализация воды.

12. Наличие примесей, изменяющих растворяющую способность вод и др.

Результатом карстового процесса являются поверхностные и подземные карстовые формы:

· Распространение;

· Морфология;

· Генезис;

· Отложения;

· Палеогеография;

· Археология и

· Использование карстовых форм слагают базу данных карстовых явлений.

Далее создаются карты распространения и плотности поверхностных и подземных форм и приводятся описания, планы и разрезы карстовых полостей.

При создании тематического блока ГИС, кроме основного, важно рационально построить и сопутствующий набор баз данных. В каждом конкретном случае, в зависимости от природных условий территории, антропогенной нагрузки и характера хозяйственного освоения, а также целей и задач создаваемой «ГИС-Карст», перечень сопутствующих баз может изменяться в достаточно большом диапазоне.

Рассмотрим особенности баз данных ГИС. База данных - это совокупность сведений, которая описывает некоторую систему. При их создании следует учитывать методы, благодаря которым база будет выводиться для просмотра и редактирования. Желательно реализовать функции, которые будут производить сортировку данных, их выборку, переход между полями и записями, сохранение внесенных изменений. Наконец, следует выбирать формат базы данных, исходя из конкретно поставленной задачи.

Программирование графики для ГИС-приложения - едва ли не самый сложный момент. Создание электронно-цифрового образа географической карты требует чрезвычайно высокой точности. Конечно, карту можно просто отсканировать и вставить в программу, но в этом случае теряется сам смысл информационной системы. ГИС, как правило, создается для удобства проведения дальнейших исследований. Поэтому создатель системы должен реализовать как можно больше возможностей для анализа графической информации. Предполагается, что должна быть использована многослойность в представлении карт, то есть наложение географических карт друг на друга. Должны быть реализованы возможности для построения новых синтетических карт, исходя из результатов послойного анализа. Например, после наложения таких слоев, как слой вновь образованных карстовых форм и слой всех известных карстовых форм, желательно, чтобы система могла построить карту активности карстового процесса в целом.

Внедрение ГИС в производство протекает в нашей стране довольно медленно. Но, принимая во внимание зарубежный опыт в создании геоинформационных систем, следует отметить, что управление регионов с помощью ГИС позволяет экономить гораздо большие средства и значительно повышает оперативность принимаемых решений.

ЗАКЛЮЧЕНИЕ

На основании проведенной работы можно сделать следующие выводы:

К определению карста существуют три подхода: с точки зрения геоморфологического явления, полигенетического процесса и как совокупность этих процессов и явлений.

К основным карстующимся породам относятся:

· известняки;

· мергели;

· меловые породы;

· доломиты;

· гипсы;

· ангидриты;

· соленосные толщи;

· конгломераты.

Существуют три основные условия развития карста: наличие растворимой горной породы; наличие растворителя; наличие условий, обеспечивающих водообмен.

Выделяют поверхностные и подземные карстовые формы. К поверхностным карстовым формам относятся карры, желоба и рвы, воронки, блюдца и западины, котловины, полья, останцы. К подземным - карстовые колодцы и шахты, пропасти, пещеры.

Карстовые процессы уменьшают устойчивость геологической среды. Для наблюдения за карстовыми процессами используются методы гравиразведки, магниторазведки, электромагнитного профилирования, электромагнитного зондирования, сейсморазведки. С помощью скважинных геофизических исследований изучаются физические свойства горных пород вокруг скважин и между скважинами, определяются скорости движения и фильтрации подземных вод. Применение не менее двух методов, например одного электроразведочного и одного сейсмического, может дать более достоверное решение поставленных задач.

В последние годы для изучения и контроля карстовых процессов создаются геоинформационные системы (ГИС).

СПИСОК ЛИТЕРАТУРЫ

1. Гвоздецкий Н.А. Карст. М.: 1981.

2. Гвоздецкий Н.А. Вопросы общего карстововедения. М. 1950

3. Гвоздецкий Н.А. Карстовые ландшафты. М. 1979.

4. Гвоздецкий Н.А. Проблемы изучения карста и практика. М. 1972

5. Дублянская Г.Н., Дублянский В.Н. Теоретические основы изучения парагенезиса карст-подтопление. - Пермь: ПГУ, 1998.

6. Дублянский В.Н., Кикнадзе Т.З. Гидрогеология карста Альпийской складчатой области юга СССР. - Наука, 1984.

7. Дублянский В.Н., Клименко В.И., Михайлов А.Н. Ведущие факторы развития карста и балльная оценка его интенсивности// Инженерная геология, №2-1990.

8. Максимович Г.А. Основы карстоведения. Пермь: Наука, 1963.

9. Соколов Д.С. Основные условия развития карста. - М.: Госгеолтехиздат, 1962.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать