Концепции развития современных технологий и энергетики
овольно часто при обработке больших объемов информации наиболее целесообразно одновременное, совместное использование компьютеров разной мощности для решения задач, соответствующих их уровню. Например, в крупном банке обработка информации о клиентах и расчетах скорее всего потребует большой ЭВМ, а ввод данных и анализ результатов можно осуществить и на персональных компьютерах.

При решении многих задач расчетного характера оказывается недостаточной вычислительная мощность персональных компьютеров. Например, расчет механической прочности конструкции из нескольких сотен элементов можно произвести и на персональном компьютере, но для расчета прочности конструкции, состоящей из сотен тысяч деталей, потребуется уже большая ЭВМ или даже суперЭВМ.

Можно привести еще один наглядный пример - компьютерное производство видеофильмов. Персональный компьютер вполне подходит для имитации сравнительно простых движений. Для создания специальных видеоэффектов и фильмов требуется громадное число вычислительных операций, что не под силу персональному компьютеру. Поэтому профессиональные студии, занимающиеся производством фильмов, видеорекламы и т.п., пользуются специализированными компьютерами, выполняющими те операции, которые больше всего подходят для имитации пространственных движений.

Как уже упоминалось выше, любая ЭВМ, в том числе и персональный компьютер, содержит запоминающее устройство или память. Память - это то, что наделяет ЭВМ интеллектуальными признаками и что существенно отличает ее от других машин и механизмов. Параметрами памяти характеризуются мощность ЭВМ и ее потенциальные возможности.

2.1 Память человека и память ЭВМ

Память - несомненно, один из важнейших атрибутов человеческой сущности, делающих человека человеком. Развитый, утонченный и вместе с тем изощренный аппарат памяти, пожалуй, это основное, что выделяет человека среди других представителей живого мира. Не только запоминание окружающего (это неосознанно делают и животные), но и воспоминание, логическое осмысление, многократное обращение сознания к хранилищу памяти и извлечение из него всего того, что нужно в данный момент, - на это способен лишь человек, наделенный разумом.

Процесс "заполнения" памяти ранними детскими представлениями об окружающем мире, знаниями, полученными в школе и в вузе, тем жизненным опытом, который воплощен в образах, событиях, фактах, характеризует в основном становление личности. Содержание памяти в значительно большей степени, чем внешность, определяет неповторимую индивидуальность человеческого "Я".

Совокупная память всех людей, коллективная память человека, материализованная в многочисленных книгах, картинах, нотах, фотографиях, чертежах, кинофильмах, архивных документах и во многом-многом другом, вне всякого сомнения образует один из основных краеугольных камней фундамента человеческой цивилизации.

За последние десятилетия разнообразные технические средства накопления и хранения информации пополнились еще одним - наиболее универсальным и гибким - памятью ЭВМ, которой во все большей степени отводится постоянно возрастающая роль в совершенствовании ЭВМ, и, следовательно, в развитии экономики и общества в целом.

Никогда ранее человечество не накапливало знания столь стремительными темпами. Удвоение объема знаний и увеличение потока информации в десятки раз ожидается уже в ближайшем будущем.

Сегодня ЭВМ стала главным инструментом, с помощью которого осуществляется управление информационными потоками. Так в общих чертах выглядит современная картина. О памяти ЭВМ известно гораздо больше, чем о памяти человека, его сознательной и бессознательной деятельности. Надпись "Познай самого себя", начертанная у входа в дельфийский храм Аполлона, актуальна и по сей день. Память человека обладает индивидуальными, многогранными, удивительными и большей частью не объясненными пока свойствами. Цицерон считал, что "для ясности памяти важнее всего распорядок; поэтому тем, кто развивает свои способности в этом направлении, следует держать в уме картину каких-нибудь мест и по эти местам располагать воображаемые образы запоминаемых предметов". Примерно по такому принципу построена и оперативная память ЭВМ. Из приведенных образных сравнений понятно, что память ЭВМ по многим параметрам отстает от мозга человека. И мы непременно "должны учиться у природы и следовать ее законам", как утверждал Н. Бор.

И творческая, и подсознательная деятельность, и другие ее виды часто объединяемые одним словом "чувство", применительно к памяти ЭВМ можно отнести к искусственному интеллекту, находящемуся в настоящее время на начальной стадии развития.

Высокая плотность записи, большая емкость памяти, высокое быстродействие, способность восприятия и аналоговой, и цифровой информации, возможность оперативного доступа к данным, сочетание адресного и ассоциативного поиска, объединение последовательного и параллельного принципов ввода-вывода информации, отсутствие механически перемещающихся узлов, высокая долговечность и надежность хранения - вот те основные качества, которыми хотелось бы наделить разрабатываемые долговременные запоминающие устройства.

2.2 Технологические возможности реализации высокой информационной плотности

Большинство моделей ЭВМ, от мини-ЭВМ до сложных вычислительных комплексов и систем, содержат внешние запоминающие устройства, которые базируются в основном на магнитной записи. Прогнозы специалистов показывают, что на ближайшую историческую перспективу устройства магнитной записи останутся доминирующими на мировом рынке информационной техники.

Себестоимость внешних запоминающих устройств по сравнению с себестоимостью других устройств современных ЭВМ, относительно велика. Поэтому их совершенствование направлено, с одной стороны, на снижение себестоимости, а с другой - на повышение качества записи и воспроизведения информации.

С развитием средств вычислительной техники растет и будет расти спрос на запоминающие устройства небольших размеров, способные хранить большой объем информации. В этой связи проблема повышения информационной плотности записи - одна из важнейших в современных запоминающих устройствах большой емкости.

В запоминающих устройствах на подвижном магнитном носителе, где основное - это накопление информации, фактором первостепенной важности является поверхностная информационная плотность записи, определяемая количеством информации, приходящейся на единицу площади поверхности рабочего слоя носителя записи. Поверхностная информационная плотность записи зависит от плотности записи вдоль одной дорожки (продольной плотности) и числа самих дорожек на единицу длины в поперечном относительно движения носителя направлении (поперечной плотности). Теоретически доказано, что продольная плотность записи информации на магнитном носителе может быть равной примерно 20000 бит/мм.

Если в настоящее время в лучших накопителях на магнитных дисках реализована продольная плотность около 5000 бит/мм, то становится понятным, какие возможности еще не реализованы.

Магнитная запись с перпендикулярным намагничиванием, когда перемагничивание рабочего слоя осуществляется в его перпендикулярной плоскости, обеспечивает существенное повышение информационной плотности записи. Так, в лабораторных образцах накопителей уже достигнута продольная плотность, составляющая более 10 000 бит/мм.

Оценим плотность записи, которую можно реализовать, используя элементную базу, необходимую для магнитной записи. Современной технологии вполне под силу изготовление магнитных элементов шириной около 1 мкм. Толщина такого работоспособного элемента может быть гораздо меньше 0,1 мкм (известны магнитные преобразователи с магнитным элементом толщиной менее 0,1 мкм, позволяющие получить продольную плотность записи более 10000 бит/мм). Следовательно, площадь поперечного сечения магнитного элемента, который может быть рабочим элементом основного полюса магнитной головки для записи составляет 0,1 мкм2. Минимальный диаметр светового пятна в оптических запоминающих устройствах равен примерно 1 мкм, что соответствует площади, приблизительно равной 1 мкм2. Теперь становится понятным, что реальная элементная база при магнитной записи позволяет реализовать информационную плотность на порядок выше предельно возможной плотности в оптических накопителях.

Современная технология позволяет изготавливать тонкопленочный элемент, ширина либо длина которого составляет примерно 1 мкм, что более чем на порядок меньше размера элемента серийно изготавливаемых магниторезистивных преобразователей. Существенное уменьшение толщины магниторезистивного элемента даже с использованием самых перспективных технологических приемов сопряжено с нарушением однородности по толщине, что влечет за собой изменение и электрических, и магнитных свойств. Технология сегодняшнего дня позволяет изготавливать магниторезистивный элемент, минимальное поперечное сечение которого составляет 0,030 мкм2, что в принципе дает возможность воспроизвести информацию, записанную с поверхностной плотностью около 33 бит/мкм2. Такая плотность приблизительно на порядок меньше соответствующей предельной плотности, к которой допускает приблизиться реальный магнитный носитель - с кобальт-хромовым рабочим слоем (напомним: она составляет 400 бит/мкм2). Если принять во внимание технологические возможности ближайшего будущего, когда линейный размер элемента уменьшится примерно на порядок, то магниторезистивный преобразователь с таким элементом позволит воспроизвести информацию, записанную с поверхностной плотностью, приближающейся к 400 бит/мкм2.

Это означает, что в обозримом будущем магниторезистивный преобразователь, опираясь на перспективную технологию, должен догнать магнитный носитель, и тогда их предельные характеристики плотности сравняются. При этом следует помнить, что предельные возможности и реальные устройства - это не одно и то же. В то же время без реальных возможностей не бывает и реальных устройств. Другое дело, что между ними, как правило, лежит непроторенный путь, который при недостаточно объективной оценке каких бы то ни было возможностей может оказаться безысходным. В данном случае правильный путь может выбрать практик-разработчик, каждое действие которого обосновано научным пониманием решаемой им проблемы,

2.3 Проблемы воспроизведения живого образа

Коснемся также важной области применения магнитной записи в различных аппаратах записи и воспроизведения звука и изображения. С относительно недавнего времени все чаще можно встретить и в научно-технической, и в популярной литературе термины: "цифровая звукозапись", "цифровой магнитофон" и т.п. Невольно может возникнуть вопрос: какое отношение к звукозаписи либо видеоизображению имеет "цифра"? Оказывается, имеет, причем непосредственное и прямое. И цифровой способ записи роднит, казалось бы, далекие друг от друга по назначению области магнитной видео - и звукозаписи с магнитной записью, лежащей в основе хранения громадного объема информации в современных ЭВМ. Высококачественная запись и воспроизведение звука - довольно сложная и трудная техническая задача, даже если учесть относительно высокий уровень развития современных технических средств. А теперь можно себе представить, насколько сложная задача решается при записи звука и изображения и последующего их воспроизведения, что осуществляется с помощью видеокамер и видеомагнитофонов. Магнитная лента в этом случае должна запомнить не только особенности звука, но и более сложные особенности света, его цветовой гаммы, яркости, контрастности и т.п., чтобы видимое на экране изображение приблизить к реальному воспроизводимому объекту, т.е. сделать его естественным, натуральным.

Приблизиться к живому образу помогает магниторезистивное воспроизведение. Сущность магниторезистивного воспроизведения проста. Изменяющееся магнитное поле рассеяния вызывает изменение электрического сопротивления помещенного в него магниторезистивного элемента, снимаемое напряжение с которого соответствует сигналу воспроизведения.

Магниторезистивное воспроизведение используется не только в запоминающих устройствах с подвижным носителем. Применение его гораздо шире. На магниторезистивном принципе может быть основано воспроизведение информации в запоминающих устройствах большой емкости, позволяющих реализовывать логические функции и длительно хранить информацию без разрушения. Магниторезистивные элементы могут быть использованы во многих высокочувствительных устройствах и приборах.

Преимущества магниторезистивного воспроизведения проявляются в полной мере в цифровых системах записи и воспроизведения. В настоящее время многие фирмы уже предлагают потребителю высококачественные цифровые магнитофоны.

Сегодняшний массовый потребитель оценивает качество современной бытовой радиоаппаратуры не по рекламным сообщениям или популярным статьям, а по четкости телевизионного изображения, сочности красок, естественности звучания и т.п., т е. по тому, насколько близко соответствует воспроизводимая картина реальному живому образу.

Что же дает обращение к цифре? Цифровой сигнал, так же как и аналоговый, подвержен искажениям - и частотным, и нелинейным, и шумовым наслоениям. Но для цифрового сигнала они не страшны, исказить цифровой сигнал - это значит совсем убрать какой-либо импульс или ввести импульс там, где была пауза. Такие искажения можно предотвратить, а более мелкие, меняющие форму импульса или нарушающие чистоту паузы, нетрудно устранить. Для этого используется электронный блок - регенератор цифрового сигнала. Из него выходят неискаженные, отреставрированные последовательности импульсов - пауз, из которых после цифро-аналогового преобразования рождается практически неискаженный аналоговый сигнал, а значит, в конечном результате и неискаженный звук. Достаточно сказать, что в системах цифровой звукозаписи уровень шумов незначителен, т.е. они гораздо слабее основного сигнала и практически не слышны.

Таким образом, цифровая звукозапись и согласующееся с ней магниторезистивное воспроизведение - реальные средства приближения к воспроизведению тембрового богатства и соловьиного пения, и большого оркестра, а также ярких красок на весеннем лугу т.е. реальные средства для последовательного, поступательного приближения к воспроизведению живого образа того или иного объекта.

2.4 Голографическая память

Весьма важным является быстродействие памяти, обусловленное инерционностью процессов записи, поиска, считывания и в случае реверсивного носителя - стирания. Запись и считывание описываются скоростью обмена информацией, поиск и стирание - продолжительностями этих процессов.

Резкое увеличение емкости памяти требует и обязательного роста скорости обмена информацией. Иначе "электронный архив" превратится в "электронную свалку". А повышения быстродействия фактически невозможно добиться, лишь совершенствуя, улучшая дисковые накопители, - необходим какой-то иной принцип ввода (записи) и вывода (считывания) информации.

Необходима иная идейная концепция. Оказывается, такая концепция существует, она давно известна, интенсивно разрабатывается и уже привела ко многим достижениям в ряде областей техники. Речь идет о голографическом запоминающем устройстве.

Голографическое запоминающее устройство позволяет практически реализовать все те особенности, которые присущи человеческому мозгу, а также дополнить их возможностями цифровых ЭВМ. А чисто технические потенции этих устройств, разумеется, неизмеримо богаче, чем возможности мозга.

Однако прошло несколько десятилетий с начала разработки голографической памяти, а реальных конкурентоспособных устройств, которые можно было бы отнести к промышленным, а не к лабораторным, до сих пор нет. В чем же дело? Все тот же известный диссонанс идейных концепций и "элементной базы". Мы ставим здесь кавычки, так как в наш "технологический век" именно то, что иногда высокомерно, по старинке, называют "элементной базой", составляет физико-техническую основу, вернее, сущность новых направлений. Транзистор, интегральная схема, микропроцессор - эти "элементы", каждый в свое время, определяли "лицо" вычислительной техники и не только параметры конкретных ЭВМ, но и всю идеологию этого научно-технического направления. Появился лазер - и возникли квантовая радиофизика, топография, нелинейная оптика. Хотя, строго говоря, идейные основы этих направлений были известны намного раньше. Но только лазер дал каждому из них жизнь.

Элементная база оптических дисковых накопителей сложилась к концу 70-х годов, и конечно же, не случайно именно в начале 80-х начался "бум" в развитии и этого направления.

С голографическими запоминающими устройствами ситуация, увы, иная. Используемые в лабораторных разработках элементы - газовые лазеры, разнообразные оптические затворы, дефлекторы, транспаранты - еще очень несовершенны. Как правило, они громоздки, недолговечны, сложны в изготовлении и эксплуатации, обладают недостаточно высокими значениями определяющих параметров. В элементах используются разнородные материалы, они не всегда хорошо согласуются друг с другом. Реверсивные голографические среды, структуры для многослойной объемной записи вообще еще очень далеки от практического применения. Приходится констатировать, что "элементная база" голографической памяти - если оценивать ее с позиций промышленного производства - еще не создана.

Правда, в последнее десятилетие в развитии ряда направлений оптоэлектроники достигнуты значительные успехи, которые косвенно, а иногда и прямо способствуют решению рассмотренной проблемы. Созданы полупроводниковые лазеры с высокой степенью когерентности излучения, позволяющие записывать качественные голограммы. Развивается интегральная оптика, в рамках которой традиционные объемные оптические элементы заменяют тонкопленочными. Тонкопленочные оптические затворы могут переключаться напряжением всего в несколько вольт, при этом время переключения может быть менее 1 нс. Непрерывно улучшаются характеристики пленочных акусто-оптических дефлекторов, заметны сдвиги и в совершенствовании оптических транспарантов. Все это вселяет оптимизм.

Оптическая память с ее огромной плотностью записи, сверхвысокими скоростями обмена информацией, способностью оперировать и с цифрами и с образами, с ее надежностью, долговечностью, ничтожно малой "стоимостью хранимого бита" заслуживает, чтобы на ее становление и развитие человечество не пожалело сил.

2.5 Нейронные сети

В 80-90-е годы прогресс в развитии вычислительной техники многие связывают с созданием искусственных нейронных сетей. Успехи в разработке и использовании нейрокомпьютеров определяются их принципиально новым свойством - возможностью эффективного самообучения в ходе решения наиболее сложных задач.

По своей сути нейрокомпьютер является имитацией человеческой нейронной сети. Поэтому стоит сделать ряд замечаний об устройстве головного мозга. Основная элементарная ячейка мозга - нейрон - имеет объем всего лишь 10-3 мм и массу 10-6 г. Нервная ткань, покрывающая полушария головного мозга слоем толщиной в несколько миллиметров, окрашена в два цвета. Серые нейроны окружены белыми отростками - аксонами и дендритами, которые проводят нервные импульсы к другим клеткам. Нейрон взаимодействует с нейроном, посылая ему электрический сигнал - нервный импульс. Помимо электрической, нейрон обладает еще и химической активностью. При этом для дальней связи служит длинный отросток нейрона - аксон, который способен усиливать сигнал и передавать его без затухания со скоростью до 100 м/с и выше. Дендриты служат в основном для приема сигналов, хотя могут с затуханием передавать сигнал до мишени на небольшие расстояния.

Используя терминологию вычислительной техники, можно сказать, что нейрон является бинарной ячейкой. Он может находиться либо в возбужденном, либо в невозбужденном состоянии. Наибольший интерес представляет то, как ему удается изменять свое состояние в результате взаимодействия с другими нейронами и клетками. Сам по себе нейрон не генерирует никакого выходного сигнала, пока суммарный входной сигнал не превышает определенной пороговой величины. Если же порог превышен, то нейрон начинает посылать сигналы другим нейронам. В нейронной сети полезная информация запоминается не отдельными нейронами, а группами нейронов, их взаимным состоянием. Можно считать, что каждый нейрон в большей или меньшей степени связан примерно с 104 нейронами. Принимая внешнюю информацию и обмениваясь внутри головного мозга, каждый отдельный нейрон имеет возможность последовательно приближаться к принятию в сложной внешней обстановке правильного решения и переходу в нужный момент в нужное (возбужденное либо невозбужденное) состояние. При этом человеческий мозг в целом также имеет возможность последовательно принимать правильные решения.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать