Концепции современного естествознания

Концепции современного естествознания

19

"Истина скрыта в глубине (лежит на дне морском)"

Великий философ древности Демокрит

V в. до н. э.

Часто встречающееся утверждение: главная цель естествознания - установление законов природы, открытие скрытых истин - явно или неявно предполагает, что истина где-то уже есть и существует в готовом виде, ее надо только найти, отыскать как некое сокровище.

Приведенное выше утверждение имеет два аспекта. Первый, - в какой мере можно доверять научным результатам, т. е. вопрос о качестве работы ученого. Второй аспект - философский - гораздо более тонкий и связан с вопросом о том, что же называть истиной.

Начнем с первого. Приходится констатировать, что научная продукция на своем пути к научной истине переполнена ошибочными результатами. Ошибочными не в том объективном смысле, что некоторые теории и представления со временем отмирают, уступая место новым, или результаты эксперимента всегда сопровождаются вполне определенной абсолютной ошибкой, а в гораздо более простом смысле, когда предлагаемый результат не выдерживает проверки на соответствие актуальным критериям правильности. Ошибочные формулы, неверные доказательства, неправильные условия, несоответствие фундаментальным законам естествознания и тому подобные являются, к сожалению, не исключением, а правилом. Для определения состоятельности или несостоятельности научных результатов проводятся их экспертная оценка, оппонирование и рецензирование. Эффективна ли такая процедура? Приведем некоторые цифры. В годы Второй мировой войны национальный совет изобретений США рассмотрел 208975 заявок на изобретения. Из них, не противоречащих здравому смыслу, оказалось 8615 (чуть больше 4%), а реализовано всего 106 (меньше 0,05%).

До недавнего времени в отечественных академических журналах после рецензирования публиковалась примерно каждая пятая работа из всех представленных к публикации. Добросовестное оппонирование позволяет существенно сократить поток несостоятельных работ, представленных на соискание ученой степени.

Естествознание тем или иным способом систематизирует наши наблюдения над природой. При этом нельзя считать, например, теорию кривых второго порядка приближенной на том основании, что в природе в точности кривых второго порядка нет.

В современном представлении истина - правильное, адекватное отражение предметов и явлений действительности познающим субъектом, воспроизводящее их так, как они существуют вне и независимо от сознания. Истина объективна по содержанию, но субъективна по форме как результат деятельности человеческого мышления. Можно говорить об относительной истине как отражающей предмет не полностью, а в объективно обусловленных пределах. Абсолютная истина полностью исчерпывает предмет познания. Всякая относительная истина содержит элемент абсолютного знания. Абсолютная истина складывается из суммы относительных истин. Истина всегда конкретна.

Как бы ни представлялось содержание истины, занимающее умы великих ученых с древних времен, и как бы ни решался весьма сложный вопрос о предмете науки в целом и естествознании в частности, одно очевидно: естествознание есть чрезвычайно эффективный, мощный инструмент, не только позволяющий познать окружающий мир, но и приносящий громадную пользу.

Вряд ли вызывает сомнение утверждение: математика нужна всем вне зависимости от рода занятий и профессии. Однако для различных людей нужна и различная математика: для продавца может быть достаточно знаний простейших арифметических операций, а для истинного естествоиспытателя обязательно нужны глубокие знания современной математики - только на их основе возможны открытие законов природы и познание ее гармонического развития. Иногда к познанию математики влекут и субъективные побуждения. Об одном из них Луций Анней Сенека (4 до н. э. - 65 н. э.), римский писатель и философ, писал: Александр, царь Македонский, принялся изучать геометрию -- несчастный! -- только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве». Возникает вопрос: может ли серьезный естествоиспытатель обойтись без глубокого познания математики? Да, может. Например, Чарльз Дарвин, обобщая результаты собственных наблюдений и достижения современной ему биологии, вскрыл основные факторы эволюции органического мира. Причем он это сделал, не опираясь на хорошо разработанный к тому времени математический аппарат, хотя и высоко ценил математику. Кто знает - может быть, обладание математическим чувством позволило бы Дарвину внести еще больший вклад в познание гармонии природы.

Известно, что еще в древние времена математике придавалось большое значение. Девиз первой Академии - платоновской Академии - "Не знающие математики сюда не входят" - ярко свидетельствует о том, насколько высоко ценили математику на заре развития науки, хотя в те времена основным предметом науки была философия. Академия Платона (428/427 - 348/347 до н. э.), одного из основоположников древнегреческой философии, - первая философская школа, имевшая на первый взгляд весьма косвенное отношение к математике.

Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания.

Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является.

Химией называют науку о химических элементах и их соединениях. Любое вещество состоит из химических элементов и их соединений. Свойства вещества определяются:

· его элементным и молекулярным составом;

· структурой его молекул;

· термодинамическими и кинетическими условиями, в которых вещество находится в процессе химической реакции;

· уровнем химической организации вещества.

История развития химических концепций начинается с древних времен. Демокрит, Эпикур и другие представители древней натурфилософии высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качественное различие. Аристотель и Эмпедокл объясняли все видимое разнообразие тел природы с антиатомистических позиций: они считали, что в телах сочетаются различные элементы-стихии или элементы-свойства: тепло и холод, сухость и влажность. Подобное учение об элементах-свойствах было развито в алхимии, которая изобиловала такими, например, рецептами приготовления необходимых веществ: " возьмите немного горючести, прибавьте к нему текучести, отнимите влажность..." и т.п. Однако ни идеи Демокрита об атомах, ни представления Эмпедокла об элементах-стихиях не нашли применения ни в металлургии, ни в стеклоделии, ни в гончарном ремесле.

Первый, по-настоящему действенный, способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627- 1691).

Результаты экспериментальных исследований Р. Бойля показали, что качества и свойства тел зависят от того, из каких материальных элементов они состоят. Возникшее таким образом учение о составе вещества существует и сегодня и продолжает развиваться на качественно новом уровне.

Учение о составе занимало монопольное положение вплоть до 30-40-х годов прошлого века. К тому времени мануфактурная стадия производства с ручной техникой и ограниченным ассортиментом сырья сменялась фабричной стадией с машинной техникой и широкой сырьевой базой. В химическом производстве стала преобладать переработка огромных масс веществ растительного и животного происхождения, качественные разнообразия которых потрясающе велики - сотни тысяч химических соединений, а состав крайне однообразен - лишь несколько элементов-органогенов: углерод, водород, кислород, сера, фосфор. Объяснения необычайно широкому разнообразию органических соединений при столь многообразном их элементном составе стали искать не только в их составе, но и в структуре молекул.

В 1860 г. выдающимся русским химиком А.М. Бутлеровым (1828- 1886) была создана теория химического строения вещества - возник более высокий уровень развития химических знаний - структурная химия.

Период становления структурной химии иногда называют, "триумфальным маршем органического синтеза". В этот период зарождалась технология органических веществ. Были получены всевозможные красители для тканей, искусственный шелк и т.п.

Интенсивное развитие автомобильной промышленности, авиации, энергетики и приборостроения в первой половине XX в. выдвинуло новые требования к производству материалов. Необходимо было получать высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высоко стойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения таких материалов знаний о составе и структуре вещества было недостаточно.

Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывалось изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. Такое учение способствовало организации много тоннажного производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений - на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

В 1960- 1970 гг. появился следующий, более высокий, уровень химических знаний - эволюционная химия. В основе ее лежит принцип самоорганизации химических систем, т. е. принцип применения химического опыта высокоорганизованной живой природы.

Молекула - наименьшая структурная единица химического соединения, обладающая его главными химическими свойствами. Молекулы простых веществ состоят из одинаковых атомов, сложных - из разных атомов. Инертные газы (гелий, неон, аргон, криптон, ксенон, радон) находятся в одноатомном состоянии. Существует большое количество соединений, молекулы которых состоят из многих тысяч атомов (искусственные полимеры, белки, целлюлоза). Такие молекулы называются макромолекулами.

Как известно, химия изучает процессы превращения молекул при взаимодействиях и при воздействии на них внешних факторов (теплоты, света, электрического тока, магнитного поля), во время которых образуются новые химические связи. Под химической связью понимается результат взаимодействия между атомами, выражающийся в создании определенной конфигурации атомов, отличающих один тип молекулы от другого.

19

Рис. 1а «Ионная вязь» Рис. 1б «Ковалентная связь»

В молекуле выделяют два основных типа связей: ионную и ковалентную, а также водородную.

При ионной связи один атом отдает другому один или несколько электронов, и так каждый атом становится обладателем стабильного числа электронов. Например, у атома хлора для стабильности недостает одного электрона, а у атома натрия во внешней оболочке - только один электрон. Его принимает атом хлора, и тогда у натрия протонов становится больше, чем электронов. Атомы натрия и хлора, превратившись в положительно и отрицательно заряженные ионы, притягиваются друг к другу и образуют поваренную соль.

При ковалентной связи двух атомов возникает обобществленная пара электронов, по одному от каждого атома (пример - молекула водорода). Оба атома притягивают эту пару электронов с одинаковой силой, и электроны (или электронное облако) находятся большее время между ними. Если ковалентная связь образуется между атомами разных элементов, то электронное облако оказывается смещенным, т.е. большее время находится ближе к более притягивающему атому. Такую связь называют полярной, или электрически несимметричной (в последнем случае одна приближается к ионной).

Водородная связь названа так из-за атома водорода, который соединен ковалентной связью с другим атомом (например, кислорода или азота) так, что положительной оказывается водородная часть молекулы. Этот частично положительный водородный «край» притягивается третьим, отрицательно заряженным атомом (опять же кислорода или азота). Эта связь слабее, чем две предыдущие, но широко распространена в живой материи. Практически, можно сказать, что на ней держится мир живого.

Силы взаимодействия между атомами являются короткодействующими (радиус действия r ~10-9 м, размер атома ~ 10-10м). Причем одновременно действуют как силы притяжения, так и силы отталкивания, но они по-разному зависят от расстояния. При r = r0 - состояние устойчивого равновесия, на этом расстоянии и находятся атомы, образующие молекулу. Если увеличить r - увеличиваются силы притяжения и возвращают систему в исходное состояние. При r < r0 силы отталкивания также возвращают систему в состояние устойчивого равновесия.

Химические связи можно рассматривать с точки зрения превращения энергии: если при создании молекулы ее энергия меньше, чем сумма энергий составляющих ее атомов, то она может существовать, т.е. ее связь устойчива. Устойчивым считается состояние, в котором потенциальная энергия минимальна, поэтому при образовании молекулы атомы находятся в потенциальной яме, совершая небольшие тепловые колебания около положения равновесия (см. рис.2). Расстояние от вертикальной оси до дна ямы соответствует равновесию - на этом расстоянии находились бы молекулы, если бы прекратилось тепловое движение. Точки левее дна соответствуют отталкиванию, правые - притяжению. Крутизна кривой выражает силу взаимодействия между атомами: чем круче кривая, тем больше сила взаимодействия.

19

Для разных пар атомов различны не только расстояния от вертикальной оси до дна ямы, но и глубина ям. Действительно, для того, чтобы выбраться из ямы, нужна энергия, соответствующая глубине ямы. Поэтому глубину ямы можно назвать энергией связи частиц, или энергией ассоциации. Энергия, необходимая для разложения молекулы на атомы, называется энергией диссоциации. Она равна энергии ассоциации.

Насыщаемость молекул, т.е. способность присоединять атомы, определяет их постоянный состав для данного вещества и связана с валентностью - свойством атомов (или группы атомов) соединяться с некоторым числом других атомов. Величина валентности определяется числом атомов водорода (или другого одновалентного элемента), с которыми соединяется атом данного элемента.

Химические реакции - это основа химии. Одни реакции идут в обе стороны (тогда и стрелки в уравнении реакции рисуют в обе стороны), т.е. являются обратимыми, другие только в одну, третьи - вообще не идут. Здесь важно представлять, от чего зависит возможность осуществления реакции, т.е. перестройки химических связей. Ответ на этот вопрос дает термодинамика. Рассмотрим условия самопроизвольного развития химической реакции и условия ее возникновения. Допустим, вы прижгли ранку перекисью водорода (неустойчивое соединение), но обратной реакции не будет. Термодинамика объясняет это так: реакция пойдет только при уменьшении энергии веществ и увеличении энтропии1. В самом деле, энтропия растет, так как в малой молекуле воды (она меньше, чем молекула перекиси водорода) расположение атомов менее упорядочено, чем в большой. Реакция возможна, если она сопровождается уменьшением величины свободной энергии

F = E - TS. (Пример с камнем: когда он падает в поле сил тяготения, его потенциальная энергия уменьшается - обратно он самопроизвольно не поднимется). В химических реакциях обязателен и учет изменения энтропии, так как возможность реакции еще не означает, что она самопроизвольно пойдет.

Развитие квантовой химии позволило рассмотреть на микро уровне протекание реакций, отдельные молекулы и их электронные структуры. Использование термодинамического подхода, описывающего не отдельные объекты, а систему в целом, позволяет глубже понять тенденции протекания реакций.

Свободные радикалы. В прошлом столетии только два типа частиц считали участвующими в химических реакциях: атомы и молекулы. В 1900 г. Мозес Гомберг

(Украина) обнаружил третью - свободный радикал. Он выделил некоторое соединение, способное вступать в реакции, и доказал, что оно представляет из себя половину молекулы (обозначается точкой над символом, например).

Подводя некоторый итог, можно сказать, что при химических превращениях на первый план выступают реакционная способность, энергетические и энтропийные возможности, каталитические и кинетические закономерности.

1Понятие энтропии первоначально возникло в термодинамике. Это слово ввел еще в 19-м веке Клаузис для определения термодинамических циклов. В 1945 году Клод Шеннон ввел энтропию в теорию информации, ставшую основой кибернетики. Энтропия у него означала меру информации. Статистическая физика рассматривала энтропию как меру вероятности пребывания системы в данном состоянии

В общем случае, в химической системе имеют место как прямые, так и обратные реакции, причем большинство химических реакций не идут до конца. Здесь становится важным понятие равновесия между прямой и обратной реакциями. В какой-то момент их скорости сравняются, и в данной системе при данных условиях установится динамическое равновесие. Вывести систему из равновесия можно, только изменив условия согласно принципу, предложенному в 1884 г. Анри Луи Ле Шателье (1850-1936): «если в системе, находящейся в равновесии, изменить один из факторов равновесия. Например, увеличить давление, то произойдет реакция, сопровождающаяся уменьшением объема, и наоборот. Если же такие реакции происходят без изменения объема, то изменение давления не будет влиять на равновесие». Другая, современная формулировка этого принципа следующая:

Внешнее воздействие, которое выводит систему из термодинамического равновесия, вызывает в ней процессы, направленные на ослабление результатов такого воздействия.

Ле Шателье применял этот закон в промышленных условиях для оптимизации синтеза аммиака, производства стекла и цемента, выплавки металлов, получения взрывчатых веществ. Как оказалось, катализаторы не влияют на положение равновесия: они одинаково влияют на прямую и обратную реакции, ускоряют достижение равновесия, но не сдвигают его.

В настоящее время принцип Ле Шателье рассматривается как общий принцип стабильности, согласующий взаимосвязи между элементами Вселенной (Универсума), в своей расширенной трактовке он может быть распространен на живые системы, на социальные системы. Так, с появлением жизни возникает принцип отбора, основанный на стремлении живого сохранить свой гомеостаз, т.е. целостность и равновесие, как самого организма, так и популяции. Принцип Ле Шателье, таким образом, связан с глубокими основами мироздания.

Эволюционная химия вошла в науку и практику сравнительно недавно - в 50-60-х годах. Если биологи к тому времени широко использовали эволюционную теорию Дарвина, то химики не проявляли активного интереса к происхождению видов, составляющему сущность эволюционной теории. Не без оснований считалось, что получение любого нового химического вещества всегда было делом рук и достоянием разума человека: молекулы нового химического соединения конструировались по законам структурной химии из атомов и атомных групп, как здание строится из кирпичей или блоков. Живые же организмы подобным образом собрать нельзя. Но, несмотря на это, назревали эволюционные проблемы и для химических объектов, связанные с самопроизвольным (без участия человека) синтезом новых химических соединений - более сложных и высокоорганизованных продуктов по сравнению с исходными веществами. В этой связи эволюционную химию считают предтечей биологии - наукой о самоорганизации и саморазвитии химических систем.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать