Обмен веществ и энергии. Терморегуляция

Обмен веществ и энергии. Терморегуляция

Обмен веществ и энергии. Терморегуляция

Характеристика обмена веществ и энергии

Обмен веществ и энергии - это основная функция организма. Под обменом веществ и энергии понимают совокупность процессов поступления питательных и биологически активных веществ в пищеварительный аппарат, превращения или освобождения их и всасывание продуктов превращения и освобождения веществ в кровь и лимфу, распределение, превращение и использование всосавшихся веществ в тканях органов, выделение конечных продуктов превращения и использования, вредных для организма. Выполнение любой другой функции организма связано с осуществлением обмена веществ и энергии.

Обмен веществ и энергии в организме осуществляется в три фазы: 1) поступление в организм нужных веществ, превращение и всасывание их в пищеварительном аппарате; 2) распределение, превращение и использование всосавшихся веществ; 3) выделение конечных продуктов превращения и использования веществ.

В процессе обмена веществ происходит превращение энергии. Потенциальная энергия сложных органических соединений при их расщеплении освобождается, превращаясь в механическую, электрическую и тепловую. Она используется на поддержание температуры тела, на совершение внешней работы, на процессы, связанные с ростом, развитием и жизнедеятельностью организма.

Обмен веществ представляет собой единство двух процессов: ассимиляции и диссимиляции.

Ассимиляция - совокупность процессов, обеспечивающих образование в организме свойственных ему веществ из веществ, поступивших в организм из внешней среды.

Диссимиляция - совокупность процессов ферментативного расщепления сложных веществ. Оба процесса взаимосвязаны и возможны только при наличии другого. Интенсивность одного процесса зависит от интенсивности другого.

Обмены различных веществ в организме тесно взаимосвязаны, но для облегчения понимания целесообразно рассмотреть отдельно обмен белков, жиров, углеводов, водно-солевой обмен, обмен витаминов. Каждый из них имеет свои особенности.

Обмен белков

Белки имеют особое биологическое значение, так как являются носителями жизни. Они представляют собой материал, из которого строятся все клетки, ткани и органы организма; входят в состав ферментов, гормонов и др. Белковый оптимум составляет 1 г белка на 1 кг массы тела.

Все процессы в организме связаны с синтезом белка. Главную роль в синтезе белка играют нуклеиновые кислоты ДНК и РНК. ДНК находится в ядрах клеток, а РНК - в протоплазме клеток и ее структурах. ДНК являются носителями информации о структуре белка, т.е. являются образцом, с которого снимается копия. РНК передают информацию с ДНК на рибосомы, где и происходит образование новых белковых молекул.

Белки и нуклеиновые кислоты имеют ведущее значение в обмене веществ в организме. Обмен белков, как и всякий обмен, протекает в 3 фазы:

расщепление белков в желудочно-кишечном тракте и всасывание продуктов расщепления;

превращение всосавшихся продуктов в организме и образование специфических для данного организма структур, белков, гормонов, ферментов и др.;

3) выделение из организма конечных продуктов обмена белков. Нуклеиновые кислоты входят в состав нуклеопротеидов, которые начинают превращаться в желудке под действием пепсинов с освобождением нуклеиновых кислот. Они в кишечнике под влиянием нуклеаз поджелудочного сока и фосфоэстераз кишечника гидролизуются с образованием в конечном счете мононуклеотидов, нуклеозидов, фосфорной кислоты, которые всасываются в кровь.

Мононуклеотиды в организме используются для синтеза нуклеиновых кислот; выполняют роль источников энергии, регуляторов активности химических реакций, входят в состав коферментов и др. В зависимости от типа клеток концентрация в них мононуклеотидов различна. Синтез их осуществляется наиболее активно в тканях эмбриона.

Превращение белков начинается в желудке под действием ферментов. Они расщепляются до полипептидов, пептидов и частично аминокислот. Дальнейшее расщепление белка, полипептидов и пептидов происходит в кишечнике под действием ферментов до аминокислот, которые затем всасываются в кровь.

Аминокислоты с кровью доставляются в клетки тканей и органов, и прежде всего в печень. Аминокислоты используются для синтеза белка, свойственного данному организму, его органу, ткани, белка, связанного с ростом, функцией, с самообновлением, регенерацией.

В печени синтезируются белки плазмы крови, белки печеночной ткани, которые используются на восстановление белков ткани печени, белок креатин, используемый мышцами, где он фосфорилируется до креатинфосфата, окисляющегося с образованием креатинина.

В тканях и органах организма синтезируется белок тканей, используемый на восстановление собственных белков. В печени и тканях наряду с синтезом происходит и обновление имеющегося в них белка. Считают, что половина всего азота организма обменивается на новый в течение 5…7 сут.

Одновременно в организме происходит распад белка. При этом образуются аминокислоты, которые поступают в кровь. Образовавшиеся аминокислоты, наряду с аминокислотами, поступающими из пищеварительного тракта, включаются в новые обменные реакции и используются для синтеза белка тканей.

Аминокислоты в организме не откладываются. Поэтому нормальное протекание белкового обмена характеризуется азотистым равновесием, т.е. количество азота, поступившего в организм, соответствует количеству азота, выделяемому из организма. Излишки аминокислот, поступающие с кормом, в печени могут превращаться в углеводы и жиры.

Все аминокислоты подразделяют на заменимые и незаменимые. Незаменимые аминокислоты не могут быть синтезированы в организме, а заменимые могут. Для синтеза белка необходим определенный набор заменимых и незаменимых аминокислот. В зависимости от содержания аминокислот в белках последние делят на полноценные и неполноценные.

Незаменимых аминокислот для свиньи, курицы и человека 10: дизин, триптофан, гистидин, фенилаланин, лейцин, изолейцин, метионин, валин, треонин, аргинин.

У жвачных и некоторых других видов животных есть свои особенности в обмене белка. Так, у жвачных микрофлора преджелудков способна синтезировать все незаменимые аминокислоты и, следовательно, могут обходиться кормом без незаменимых аминокислот.

Избыток аминокислот может использоваться и как источник энергии: аминокислоты дезаминируются, а затем окисляются с освобождением энергии и образованием воды и диоксида углерода.

При дезаминировании в тканях образуется аммиак, который связывается с глутаминовой кислотой, образуя глутамин. Глутамин является основной формой транспорта аммиака в печень, где он распадается на глутаминовую кислоту и аммиак.

Конечными продуктами превращения белков в организме являются аммиак, который в печени превращается в мочевину, креатинин, мочевая кислота, алантоин, диоксид углерода и вода.

У птиц мочевая кислота является основным продуктом белкового обмена, соответствуя мочевине у млекопитающих.

Азотистые соединения выводятся через почки с мочой, через кожу с потом; диоксид углерода - через легкие и кожу; вода - через почки, кожу и легкие.

В крови животных поддерживается концентрация белка на уровне 60…90 г./л, мочевины - 3,33…8,32 ммоль/л.

Обмен жиров

Жиры играют в организме роль запасного энергетического материала, а также являются пластическим материалом. Обмен жиров протекает в три фазы:

1) расщепление и всасывание жиров в желудочно-кишечном тракте;

превращение всосавшихся продуктов расщепления жиров в тканях и образование специфических для данного организма жиров, использование всосавшихся продуктов как пластического материала и источника энергии;

выделение продуктов обмена жиров из организма.

В пищеварительном аппарате под действием ферментов жир подвергается гидролизу до жирных кислот и глицерина, моноглицеридов. Продукты расщепления всасываются в энтероциты, где происходит обратный синтез триглицеридов. Затем здесь из триглицеридов и белка образуются хиломикроны - триглицериды, заключенные в оболочку из белка, фосфолипидов и эфиров Холестерина, которые поступают в лимфу. Часть свободных жирных кислот и глицерин, растворимые в воде, всасываются и в кровь. С лимфой хиломикроны, поступают в венозную кровь и транспортируются к тканям и органам. Первые органы, через которые проходят хиломикроны, - сердце, легкие, а затем уже они поступают в общий кровоток.

В легких происходят задержка части хиломикронов специальными клетками - гистиоцитами и временное депонирование. При этом жир окисляется с освобождением энергии, которая используется для процессов поддержания структурной организации легких и согревания поступающего в легкие воздуха.

Наиболее важную роль в превращении жиров крови играют печень, жировая ткань, молочные железы и желудочно-кишечный тракт.

В печени хиломикроны подвергаются гидролизу с образованием жирных кислот. Они окисляются или используются для синтеза новых триглицеридов и фосфолипидов, липопротеидов, а также частично депонируются. В таком виде жир поступает из печени в кровь и далее в жировые депо.

В жировой ткани происходит синтез и депонирование триглицеридов и жирных кислот. Перед использованием тканями и органами организма жир обязательно проходит стадию депонирования в жировых депо.

Жиры входят в состав мембраны клеток, в нервную ткань, наружные покровные ткани, витамины, ферменты, биологически активные вещества. #

Из жировых депо жир используется по мере необходимости; расщепляется до глицерина и жирных кислот, которые поступают в кровь и используются органами как энергетический и пластический материал.

Жиры - это основной источник энергии в организме. С жирами в организм поступают и так называемые незаменимые жирные кислоты: линолевая, линоленовая, арахидоновая. Примерно 20 различных жирных кислот участвуют в образовании триглицеридов животного организма. Состав их в молекулах триглицеридов меняется в зависимости от вида корма.

Глицерин окисляется до диоксида углерода и воды с образованием АТФ. Окисление жирных кислот путем бета-окисления сопровождается освобождением энергии и образованием АТФ. Промежуточными продуктами окисления являются кетоновые тела: бета-оксимасляная кислота, ацетон и ацетоуксусная кислота. Конечные продукты окисления жирных кислот - диоксид углерода и вода. Основное место окисления жирных кислот - печень.

В организме осуществляется и синтез жира, жирных кислот, глицерина из белков и углеводов при избыточном их поступлении. Синтезируется глицерин из глюкозы, жирные кислоты - из ацетоуксусной кислоты.

В крови животных поддерживается концентрация общих липидов на уровне 3,0…4,0 г/л, общих фосфолипидов - 1,53…3,63 г./л, холестерина - 140 мг %.

Конечные продукты превращения жиров выводятся из организма через почки с мочой, через кожу с потом, через легкие с выдыхаемым воздухом.

Обмен углеводов

Углеводы в организме используются в основном как источник энергии. Обмен углеводов - это совокупность процессов их превращения в организме. Он осуществляется в три фазы:

гидролитическое расщепление углеводов в пищеварительном аппарате и всасывание продуктов гидролиза в кровь;

превращение и использование всосавшихся из пищеварительного аппарата продуктов гидролиза углеводов в организме, сопровождающееся включением углеводов в структуры организма и освобождением энергии;

выделение конечных продуктов обмена углеводов из организма.

Превращение углеводов под действием ферментов начинается в ротовой полости, продолжается в желудке и происходит в основном в кишечнике. Углеводы всасываются главным образом в виде глюкозы в тонком кишечнике и поступают в кровь.

С кровью глюкоза поступает в печень, где частично задерживается, частично проходит с кровью дальше и достигает тканей всех органов.

: Всосавшаяся глюкоза в основном используется как энергетический материал, так как возможности отложения ее в организме весьма ограничены. В печени, в мышцах и других органах глюкоза депонируется в виде гликогена. Часть глюкозы в печени превращается в жир и откладывается в жировых депо.

Во всех тканях, пройдя стадию депонирования, глюкоза используется как источник энергии, т.е. окисляется. Окисление глюкозы происходит как в аэробных, так и анаэробных условиях.

Вначале глюкоза активируется, превращается в пировиноградную кислоту. Ваэробных условиях пировиноградная кислота окисляется в цикле Кребса до диоксида углерода и воды с образованием АТФ. При полном окислении молекулы глюкозы образуется 38 молекул АТФ. В анаэробных условиях пировиноградная кислота превращается в молочную кислоту с образованием энергии. Таким образом из молекулы глюкозы при отсутствии кислорода образуется 2 молекулы АТФ. Затем в печени из молочной кислоты синтезируются глюкоза и гликоген. Если же на этапе молочной кислоты возникают аэробные условия, то она превращается в пировиноградную кислоту, которая уже окисляется в цикле Кребса.

Глюкоза используется для синтеза лактозы, липидов, глицерина, аминокислот, жирных кислот.

У жвачных животных углеводы кормов в большей части превращаются, сбраживаются в преджелудках до образования летучих жирных кислот: уксусной, пропионовой и масляной, которые всасываются в кровь. Затем в организме уксусная, пропионовая и масляная кислоты используются для образования липидов и кетоновых тел; пропионовая кислота - для синтеза глюкозы; уксусная, масляная и пропионовая кислоты окисляются в тканях органов с образованием АТФ, диоксида углерода и воды.

В крови человека и моногастричных животных обеспечивается концентрация глюкозы на уровне 1,0… 1,2 г/л, у полигастричных - 0,42…0,6 г/л.

Обмен минеральных веществ

Минеральные вещества в целом связывают воедино превращение и использование питательных веществ в организме, так как они необходимы для построения клеток, белков, ферментов, гормонов, участвуют ^физиологических процессах - нервном возбуждении, мышечном сокращении, свертывании крови и др.

В организме более 80 элементов, из них 15 жизненно необходимых. Их подразделяют на макро- и микроэлементы. К макроэлементам относят кальций, фосфор, калий, натрий, хлор, серу и магний, к микроэлементам - железо, медь, цинк, йод, марганец, кобальт, молибден, селен и др.

Обмен их осуществляется в три фазы: поступление с кормом и водой; освобождение и всасывание в кровь с использованием во всех процессах; выведение отдельно в основном с мочой и калом при поступлении в избытке и в составе различных соединений.

Роль макроэлементов. Кальций. Входит в состав опорных тканей организма - костную и мышечную, содержится постоянно в крови. Он способствует сокращению мышц, принимает участие в свертывании крови, стимулирует рождение импульсов в сердечной и гладких мышцах, участвует в определении проницаемости клеточных мембран. Кальций входит в состав молока.

Фосфор. В больших количествах включается в костную ткань в виде солей с кальцием, постоянно содержится в крови. Он входит в состав АТФ, поэтому принимает участие во всех процессах в организме.

Магний. Преимущественно входит в состав костной ткани, мышц, где включается в комплекс миозина и АТФ. Способствует взаимодействию его с актином, постоянно содержится в крови. Он является одним из основных элементов клетки и образует в ней комплексы с белками, стимулирует процессы окислительного фосфорилирования в митохондриях. Магний необходим для жизнедеятельности микроорганизмов в пищеварительном тракте.

Калий. Внутриклеточный элемент, принимает участие в возникновении и распространении возбуждения по мембране клетки, в транспорте веществ через мембрану клетки.

Натрий. Внеклеточный элемент, вместе с калием участвует в возникновении и распространении возбуждения по мембране клетки, повышает возбудимость нервной и мышечной ткани. Он обеспечивает осмотическое давление крови, служит щелочным резервом.

Хлор. Совместно с натрием обеспечивает осмотическое давление крови. Необходим для поддержания возбудимости возбудимых тканей. Он используется для образования соляной кислоты желудочными железами.

Сера. Входит в состав незаменимых аминокислот, гормонов, витаминов, поэтому ее физиологическая роль определяется их ролью.

Роль микроэлементов. Железо. Образует стабильные комплексы с белками и углеводами и участвует в процессах организма: в эритроцитах - транспорта кислорода и диоксида углерода, в мышцах - тканевого дыхания.

Медь. Находится во всех тканях организма в составе белка церулоплазмина. Она обладает большой биологической активностью. Участвует в процессах кроветворения, ускоряет включение железа в гемоглобин в эритроците; оказывает стимулирующее влияние на защитные механизмы организма, повышает воспроизводительную функцию организма. Она необходима для роста шерсти, пера.

Кобальт. Распределяется во всех тканях организма; много в эритроцитах. Он включается в состав витамина цианкобаламина, который необходим для кроветворения. Кобальт стимулирует рост организма.

Цинк. В больших количествах содержится в крови, распределяется в тканях организма. Он образует непрочное соединение с гормоном инсулином и другими гормонами, осуществляя через них стимулирование роста, воспроизводительной функции организма. Цинк необходим для процесса кроветворения и образования костей скелета.

Марганец. Содержится в значительных количествах в костях скелета, в печени и других органах и тканях, крови. Он стимулирует через фермент щелочную фосфатазу отложение жира, образование белка, кроветворение и повышает защитные силы организма.

Молибден. Участвует в обмене пуринов, оказывая этим выраженное влияние на него организма.

Йод. Задерживается в организме в больших количествах щитовидной железой. Она использует йод для синтеза своих гормонов: трийодтиронина и тироксина. Свое влияние на организм йод оказывает через эти гормоны. Он стимулирует обмен белков, жиров и углеводов, повышает сопротивляемость к вредным воздействиям окружающей среды, ускоряет синтез ферментов.

Селен. Обладает большой биологической активностью, включается в обменные процессы и обеспечивает нормальное функционирование кожи, мышц. Он стимулирует рост и развитие организма, повышает его реактивность и резистентность.

Фтор. Участвует в минерализации костей и зубов, стимулирует рост, репаративные процессы, образование антител. Усиливает действие кальциферола.

Хром. Включается в фермент трипсин.

Бром. Усиливает процесс торможения в центральной нервной системе.

В крови животных поддерживается оптимальное для обмена веществ количество минеральных веществ - 9,0 г/л. При недостатке внутренних резервов минеральных веществ животные осуществляют поиск их источников. При повышении концентрации веществ в крови они откладываются в депо, увеличивается выделение их с мочой, уменьшается их всасывание из желудочно-кишечного тракта. В том и другом случаях включаются механизмы нервно-гормональной регуляции обмена минеральных веществ.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать