Обмен веществ у рыб
p align="left">Однако на самом деле рыбы "протекают" - в том смысле, что вода и соли могут проникать через тонкие эпителиальные поверхности, особенно через жабры. Вода проникает через жабры пресноводных рыб в процессе осмоса, а соли выходят через жабры путем естественной диффузии. Поэтому рыбы должны затрачивать энергию, чтобы противостоять этим силам. Именно это они и делают в процессе, который получил название осмотической регуляции [13,14].

Осмотическая регуляция у пресноводных рыб осуществляется путем сочетания физиологических процессов, которые происходят главным образом в почках и жабрах. Функция почек состоит в том, чтобы выводить из тела избыток воды [9]. Это достигается благодаря специальным трубчатым структурам внутри ткани почек, которые отфильтровывают воду из крови и выводят ее в мочевой пузырь, откуда она испускается в виде мочи. Мочевой пузырь имеется не у всех групп рыб и его не следует путать с плавательным пузырем. При одинаковом весе тела пресноводные рыбы производят примерно в 10 раз больше мочи, чем морские (и, соответственно, примерно в 10- 20 раз больше, чем наземные животные).

Помимо того, что рыбы вынуждены справляться с избыточным притоком воды в организм, они еще должны сохранять соли, присутствующие в их теле. Необходимое пропорциональное количество солей в моче поглощается почками еще до испускания мочи. Кроме того, есть еще специальные клетки в жабрах - хлоридовые клетки, которые также помогают поддерживать солевое соотношение путем активного поглощения солей (в виде ионов) непосредственно из воды. Эта система поглощения солей, требующая затрат энергии, называется "ионным насосом". Этот процесс работает в обоих направлениях, и нежелательные ионы (такие, как ионы аммиака NH4+) обмениваются на полезные ионы (например, ионы натрия Na+) [5,14,17].

4. Зависимость обмена веществ у рыб от температуры воды

Температура водной среды - самый значительный природный фактор, который прямо воздействует на уровень обмена веществ пойкилотермных животных, к которым относятся и рыбы [12].

Всех рыб по диапазону температур, при котором возможна их нормальная  жизнедеятельность, разделяют на теплолюбивых (плотва, сазан (карп), карась, линь, растительноядные виды (толстолобики, белый амур), осетровые и прочие) и холодолюбивых (ручьевая форель, сиги, лосось, налим и др.) [10,11,16].

Обмен веществ у первых представителей наиболее эффективен при высокой температуре. Они наиболее интенсивно питаются и активны при температуре +17-28°С, при понижении температуры воды до +17°С их пищевая активность ослабевает (а зимой у многих видов вообще прекращается). Предзимье и всю зиму они проводят в малоподвижном состоянии в глубоких местах водоема [12].

Для холодолюбивых рыб оптимальные температуры +8-1б°С. Зимой они активно питаются, а их нерест происходит в осенне-зимний период. Известно, что к похолоданию и снижению температуры воды рыба "привыкает", перестраивая свой метаболизм только за 17-20 суток. При снижении температуры воды с +12°С до +4°С у хариуса, например, величины энергозатрат уменьшаются на 20% [12].

С понижением температуры воды увеличивается растворимость кислорода, поэтому зимой насыщенность воды кислородом достаточно высока.

При длительном понижении температуры воды рыбы должны располагать не только достаточным запасом жира как энергетического материала, но и в течение этого периода сохранить нормальный обмен веществ [6,12].

Способность приспосабливаться к меняющимся условиям среды - одна из важнейших особенностей живых существ. Их распространение, численность и биоразнообразие в значительной мере определяются эффективностью адаптационных механизмов. Именно они позволяют организмам существовать в условиях, часто малопригодных для жизни, а иногда несовместимых, на первый взгляд, с нею [12,13].

Механизмы температурных адаптаций [12]:

Биологические антифризы. Устойчивость к низким температурам холоднокровных животных полярных областей определяется несколькими механизмами. У обитателей этих районов в биологических жидкостях (крови и лимфе) присутствуют биологические антифризы - пептиды и гликопротеины, препятствующие замерзанию воды в клетках. Кроме того, устойчивость к холоду обеспечивают многоатомные спирты - глицерин и сорбит. Если пептиды и гликопротеины останавливают рост микрокристаллов льда в клетках, то глицерин заменяет воду, которая при понижении температуры выводится во внеклеточную среду, где лед менее опасен. Глицерин, в частности, способствует стабилизации структуры белков и биологических мембран. У большинства морских животных в снижении температуры замерзания жидкостей участвуют присутствующие в крови глюкоза, аминокислоты и соли (прежде всего NaCl). Чем больше этих молекул в растворе, тем меньше у воды возможностей формировать кристаллы льда. Такой механизм называется коллигативным (заместительным).

Высокомолекулярные антифризы адсорбируются на образовавшихся мельчайших (и поэтому не опасных) внутриклеточных кристаллах льда, не давая им расти. Это очень эффективные криопротекторы: так, гликопротеины тормозят замерзание жидкостей в 200 - 300 раз сильнее, чем вещества, обладающие коллигативным механизмом действия. Высокомолекулярные антифризы составляют значительную часть от веса всех жидкостей, и в их присутствии температура замерзания раствора ниже, чем температура таяния. У антарктических рыб антифризы постоянно присутствуют в жидкостях тела (3.5% от веса всех биологических жидкостей), что определяется генотипическими механизмами [12]. У других организмов они образуются в зависимости от сезонных колебаний температуры окружающей среды (фенотипическая адаптация). Синтез антифризов регулируется как экзогенно (при участии температуры среды и длительности светового дня), так и эндогенно (контролируется гипофизом).

Агрегатное состояние мембранных липидов. Интенсивность обмена веществ связана с клеточными мембранами, состояние которых зависит от мембранных липидов [5,13]. Степень их вязкости определяет работу мембранных ферментов, транспорт ионов, синаптическую передачу и другие процессы. Липидный бислой обычно находится в жидкокристаллическом состоянии. Но при понижении температуры мембраны “затвердевают”, и большинство мембранных процессов замедляется. Необходимая степень вязкости мембран при низких температурах поддерживается за счет изменения соотношения липидных компонентов мембран - насыщенных и ненасыщенных жирных кислот в сторону последних (они делают липидный бислой более рыхлым). Соотношение этих двух типов жирных кислот может меняться в ходе синтеза и включения в молекулы фосфолипидов, а также за счет изменения числа двойных связей. Кроме того, насыщенные жирные кислоты могут превращаться в ненасыщенные при помощи фермента десатуразы, который активируется изменением температуры. У рыб, обитающих в холодных водах, ненасыщенных жирных кислот больше, чем у жителей умеренных и тропических широт. Это позволяет метаболическим системам животных Арктики и Антарктики нормально функционировать [5,12,14].

Аминокислотные замены. Серьезная проблема для обмена веществ у холоднокровных животных при низких температурах - снижение конформационной гибкости белков, существенно затрудняющее их функции. Поддержание определенной гибкости молекул достигается благодаря мутациям, вызывающим аминокислотные замены в белках животных, которые обитают в высоких широтах. Характер таких замен детально изучен на примере фермента лактатдегидрогеназы [12]. При сравнении аминокислотных последовательностей этого белка, выделенного из скелетных мышц нототениевых рыб Антарктики и Южной Америки, было установлено, что замены локализованы в одной из б-спиралей, формирующих активный центр фермента. У большинства рыб умеренных широт в начале этой б-спирали находится остаток пролина, создающий определенную “жесткость” данному участку. У нототениевых рыб Антарктики пролин заменен на аланин, что обеспечило более гибкую структуру активному центру лактатдегидрогеназы, столь необходимую при пониженной температуре. Это только один из многих примеров генотипических адаптаций.

Компенсация энергетического обмена. Еще одно важное приспособление к холоду связано с компенсацией уровня энергетического метаболизма у холоднокровных. Так, в мышцах у полярных рыб концентрация митохондрий выше, чем у тех же видов или их близких родственников из умеренных или тропических широт [14]. Как следствие этих различий, интенсивность дыхания полярных организмов выше по сравнению с обитателями умеренного пояса при расчете на одинаковую температуру, обычно 20°С. Другой тип компенсации метаболизма - более низкий энергетический барьер ферментативных реакций в тканях полярных животных, чем обитателей умеренного пояса [17].

При сезонных или более кратковременных (несколько недель) колебаниях температуры адаптационные механизмы имеют фенотипическую природу, они формируются на протяжении одного поколения, обратимы и “не записаны” в геноме. В этих случаях холоднокровные животные вынуждены приспосабливать свой метаболизм к новому температурному режиму [12].

Один из механизмов таких фенотипических адаптаций - синтез индуцированных температурой изоформ тех или иных ферментов, которые больше приспособлены к новым условиям. Например, в мозге радужной форели, находящейся в течение трех недель при низкой температуре, синтезируется специфическая “холодовая” изоформа ацетилхолинэстеразы. Образование индуцированных температурой изоформ эстераз показано также у других видов рыб. Однако такая индукция достаточно редкое событие.

Другой механизм связан с изменением функциональных свойств ферментов без изменения их изоформ. Было обнаружено, что у рыб при адаптациях к низким и высоким температурам в течение нескольких недель меняются функциональные свойства ферментов. На примере лактатдегидрогеназы из скелетных мышц вьюна показано, что величина константы Михаэлиса (КМ), по которой можно судить о сродстве фермента с субстратом, зависит от ряда факторов, в том числе и от температуры: при оптимальной - КМ минимальна (т.е. фермент-субстратное сродство максимально), значит, фермент функционирует наиболее эффективно [12]. У рыб, адаптированных к холодной воде, фермент-субстратное сродство максимально при низкой температуре. У рыб, помещенных в теплую воду, в течение двух-трех недель оптимум фермента постепенно смещается в сторону высокой температуры. Это говорит о том, что за данный срок фермент перестраивается на работу в новых условиях [14].

5. Влияние растворенных в воде газов на обмен веществ

Вода как среда обитания рыб со-держит растворенные газы, особенно кислород, азот и в неболь-шом количестве углекислый газ.

Все рыбы дышат растворенным в воде кислородом, поэто-му содержание его в воде имеет для них решающее значение. Лишь немногие рыбы частично приспособились к дыханию атмосферным кислородом. К содержанию кислорода в воде рыбы относятся не-одинаково. Как правило, пелагические рыбы, речные и холодолюбивые, более требовательны к содержанию кислорода, чем донные, озерные и теплолюбивые [7,10].

По количеству кислорода, необходимого для нормального раз-вития рыб, их делят на несколько групп:

рыбы, нуждающиеся в очень большом содержании кислорода в воде (7--11 см3/л); при снижении его до 5 см3/л дыхание рыб делается практически невозможным (форели, сиги);

рыбы, которым также необходима высокая степень содержания кислорода в воде, однако существование их возможно и при со-держании его 5--7 см3/л (хариусы);

рыбы, менее требовательные к содержанию кислорода и легко переносящие уменьшение количества его до 4 cмз/л (окунь, карп, плотва, щука);

рыбы, довольствующиеся еще меньшим содержанием кислоро-да и могущие жить в водоемах, где его количество уменьшается до 0,5--2,0 см3/л (линь, сазан, карась) [2,17].

Морские рыбы, как правило, более чувствительны к недостат-ку кислорода, чем пресноводные, и задыхаются при уменьшении его содержания до 60--70% нормального.

Количество растворенного в воде кислорода зависит от темпе-ратуры, солености, ледового покрова, развития растительности, процессов распада органического вещества и др.

При повышении температуры и солености растворимость кисло-рода в воде уменьшается. Так, при 0°С и солености 0‰ в воде мо-жет раствориться 10,29 см3/л, а при 30° С -- только 5,57 cм3/л кис-лорода [17].

Потребление кислорода рыбами зависит от их вида, возраста, подвижности, плотности посадки, физиологического состояния, а также температуры и солености воды.

При повышении температуры воды обмен веществ возрастает и потребность в кислороде (в см3 на 1 кг массы за 1 ч) увеличи-вается.

На потребление кислорода рыбами оказывает влияние и соле-ность воды. У пресноводных рыб, например, при небольшом уве-личении солености обмен веществ возрастает, а при значительном замедляется, и потребление кислорода уменьшается.

У некоторых рыб чувствительность к кислороду обостряется на определенных стадиях развития [14].

Обычно молодь рыб более требовательна к содержанию кисло-рода, чем старшие возрастные группы. Так, личинки плотвы на 8-й день после вылупления гибнут в воде с содержанием кислоро-да ниже 3,45 см3/л, в то время как 49-дневные мальки выдержива-ют уменьшение его до 1 см3/л, а взрослые рыбы -- даже до 0,6 см3/л.

Чем рыба подвижнее, тем она больше потребляет кислорода.

Интенсивность обмена веществ и потребление кислорода оди-ночными рыбами и в скоплениях неодинаковы [10,13]. При высокой плот-ности населения рыб потребление кислорода ими снижается. У рыб, залегающих на зимовку в ямы (карповые), потребление кислорода по сравнению с одиночными рыбами значительно умень-шается. У гольяна, помещенного в водоем, где до этого содержа-лись рыбы, потребление кислорода снижается до такого же уров-ня, как и при групповом содержании.

Потребление кислорода изменяется в зависимости от физиоло-гического состояния рыбы. Перед нерестом у некоторых рыб по-требление кислорода повышается на 25--50% первоначального.

При плохом кислородном режиме интенсивность питания низ-кая и не увеличивается даже при обилии корма [13].

Для рыб неблагоприятен не только недостаток кислорода в во-де, но и избыток его, причем в обоих случаях замедляются окис-лительные процессы. При быстром повышении содержания кисло-рода у рыб появляются беспокойство, одышка, кислородный нар-коз, и они погибают от удушья.

Избыток кислорода в воде по сравнению с оптимальным режи-мом в период эмбрионального развития снижает функцию кровет-ворных органов, что вызывает анемию у рыб [6].

Снижение содержания кислорода может привести к летним и зимним заморам.

Зимние заморы обычно характерны для проточных и слабопро-точных водоемов -- озер, прудов, болот, богатых органическими веществами, на окисление которых расходуется большое количе-ство кислорода, а поступление его из воздуха становится невоз-можным из-за ледового покрова. Зимние заморы возникают и на некоторых реках, длительное время покрытых льдом [15].

Летние заморы чаще всего происходят в заросших прудах и озерах ночью или в период массового развития в них водорослей, особенно часто ночью, когда происходит усиленное потребление кислорода растениями.

Растворенные в воде углекислый газ и сероводород отрицатель-но влияют на жизнедеятельность рыб [15,16].

Углекислый газ образуется в результате дыхания живот-ных и растений, при разложении органических веществ. Наличие большого количества его является показателем загрязнения во-доема. Даже при небольшом содержании углекислого газа в воде кровь теряет способность усваивать кислород, и рыба погибает от удушья, поэтому такие водоемы непригодны для рыб [4,15].

Сероводород появляется в водоеме при недостатке кисло-рода. Сероводо-род может образовываться и на дне пресных стоячих водоемов, и некоторые малоподвижные рыбы, такие, как линь, карп, карась и др., могут переносить небольшую концентрацию сероводорода.

Следует отметить, что иногда в некоторых участках рек с бы-стрым течением, особенно под водосливом гидроэлектростанций, вода перенасыщается газами воздуха, что может вызвать у рыб газопузырьковую болезнь.

Активная реакция среды (рН), имеющая важное значение для жизни рыб, зависит от соотношения растворенных в воде кислорода и свободной углекислоты и закономерно изменяет-ся в зависимости от суточного и сезонного хода фотосинтеза.

В пресных водоемах избыток углекислого газа вызывает увеличение кислотности воды, в то время как в морской, содержащей в большом количестве бикарбонаты, избыток этого газа связыва-ется, и рН более постоянна [16].

Для каждого вида рыб характерны определенные значения ак-тивной реакции среды. При изменении этих величин обмен ве-ществ нарушается, так как снижается способность организма по-глощать кислород. Оптимальная величина рН для рыб обычно со-ставляет от 7 до 8 [2].

Выводы

В процессе жизнедеятельности потребность организма рыб в тех или иных веществах неодинакова и зависит от возраста, размера, половой зрелости рыб, гидрохимических свойств и температуры воды.

Процессы обмена веществ на мембранах клеток тесно связаны с химическим составом воды. Содержание различных солей оказывает влияние на то, какие вещества и в каких количествах будут поступать в клетку или выходить из нее.

Жидкости, присутствующие в теле рыбы, содержат различные соли. Чтобы у рыбы эффективно происходил обмен веществ, концентрация этих солей должна оставаться в узком диапазоне.

Совокупность процессов регулирования осмотического давления жидкостей организма носит название осморегуляция.

Температура водной среды и растворенные в воде газы - весомые факторы, влияющие на интенсивность обмена веществ у рыб.

Список литературы

Александров В.Я. Реактивность клеток и белки. - Л.: 1985 г.;

Баклашова Т. А. Ихтиология. - М.: 1980 - 122 стр.;

Гудин Т., Мерсер Э. Введение в биохимию растений. - М.: Мир, 1986- 312 с.

Карпевич А. Ф. Теория и практика акклиматизации водных организмов. - М: 1975 г.;

Клячко О.С. и др. // Биофизика. - 1993. -Т.28. - С.596 - 601.;

Никольский Г. В. Частная ихтиология. - 3 изд., М.:1971 г.;

Моисеев П. А., Азизова Н.А., Куранова И. И. Ихтиология. - М.: 1981 г.;

Моисеев П. А., Вавилкин А. С., Куранова И. И. Ихтиология и рыбоводство. - М.: 1975 г.;

Наумов Н.П., Kapташев Н. Н. Зоология позвоночных. - М.: 1979 г.;

Никольский Г. В. Экология рыб, 3 изд. - М.: 1974 г.;

Одум Ю. Экология: В 2 т. - М.: Мир, 1986 г.;

Озернюк Н.Д. Температурные адаптации. - М.: 2000 г.

Строганов Н. С. Экологическая физиология рыб. - М.: 1962.- Т.1.

Хочачка П., Сомеро Дж. Биохимическая адаптация. - М.: 1988 г.

Худолей В.В., Мизгирев И.В. Экологически опасные факторы. - СПб, 1996.

Шилов И.А. Экология. - М.: Высшая школа, 2003. -512 с.

Шустов С.Б., Шустова Л.В. Химические основы экологии.-М.: Просвещение, 1995.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать