Основы селекции
. Селекция животных, методы

Хотя основные принципы селекции животных существенно не отличаются от принципов селекции растений, все-таки они имеют ряд характерных особенностей. Так, у животных существует только половое размножение, смена поколений происходит редко (через несколько лет), количество особей в потомстве невелико. У них особенно сильно выражено модифицирующее влияние факторов внешней среды и затруднен анализ генотипа. Поэтому большую роль приобретает анализ совокупности внешних признаков, характерных для породы.

Одомашнивание животных началось, вероятно, 10-- 12 тыс. лет назад. Оно происходило в основном в тех же районах, где расположены и центры многообразия и происхождения культурных растений. Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило ее спектр. Поэтому одомашнивание сразу же сопровождалось и отбором. По-видимому, сначала это был бессознательный отбор, т. е. отбор тех особей, которые лучше выглядели, имели более смирный нрав и т. д. Однако постепенно начал использоваться отбор методический, осознанный и направленный на формирование у животных определенных качеств, удовлетворяющих те или иные потребности человека в данных конкретных природных и экономических условиях. Опыт многих поколений позволил создать методы и правила племенного отбора и подбора и сформировать селекцию животных как науку.

Типы скрещивания и методы разведения внедрялись в селекцию животных часто путем экстраполяции из селекции растений. Это было связано с тем, что внедрение генетических знаний в селекцию растений началось гораздо раньше, чем в селекцию животных из-за дороговизны животных объектов, меньшего количества их в семье и т. д. Такая экстраполяция, проводившаяся без учета специфики объекта, часто давала отрицательные результаты. Так, в частности, метод инбридинга был внедрен из селекции растений-самоопылителей в селекцию животных как основной метод, хотя позже была установлена необоснованность его широкого использования, так как породы животных скорее соответствуют сортам-популяциям перекрестноопылителей. Породы являются сложными полигетерозиготными комплексами, генотипы внутри которых приведены в определенную систему. Поэтому основной тип скрещиваний -- аутбридинг, хотя в селекции используется и инбридинг -- родственное скрещивание между братьями и сестрами или между родителями и потомством. Так как инбридинг ведет к гомозиготности, то он ослабляет животных, снижает их устойчивость к условиям среды, повышает заболеваемость. Тем не менее, при выведении новых пород зачастую возникает необходимость в инбридинге с целью закрепления в породе характерных хозяйственно ценных признаков, предотвращения их «растворения», сглаживания в неродственных скрещиваниях. Иногда его практикуют даже в течение нескольких поколений с целью получения в чистом виде какого-то важного признака, а затем обязательно используют аутбридинг и выводят гетерозисное потомство. Неродственное скрещивание в пределах породы и даже между породами ведет к поддержанию и усилению ценных качеств породы, если такое скрещивание сопровождается отбором характерных признаков (Приложение 4).

Хорошим примером межпородного скрещивания может служить выведенная академиком М. Ф. Ивановым высокопродуктивная порода свиней белая степная украинская от скрещивания местных беспородных украинских свиней с высокопродуктивными белыми английскими (на первом этапе). Затем применялось повторное межпородное скрещивание, несколько поколений инбридинга, давшего начало нескольким отобранным чистым линиям, которые были скрещены между собой. Таким образом, уделяя должное внимание подбору исходных производителей, их качеству, комбинируя аутбридинг, инбридинг и используя жесткий отбор потомства по необходимым признакам, селекционер реализует свою идею, свои планы, свое представление о породе.

Основными методами анализа наследственных хозяйственно ценных признаков у животных производителей являются анализ экстерьера и оценка по потомству. Для выведения новой породы животных, обладающей комплексом ценных признаков в соответствии с планом селекционера и требованиями производства, большое значение имеют правильный подбор и оценка качества исходных производителей. Оценку производят в первую очередь по экстерьеру, т. е. фенотипу. Под экстерьером понимают всю совокупность наружных форм и признаков животных, включая их телосложение, соотношение частей тела животного и даже масти и наличия для каждой породы своей экстерьерной «метки». При этом для опытного селекционера несущественные признаки интереса не представляют, им выбираются главные. Но в то же время, исследовав коррелятивные связи между признаками, можно по чисто внешним несущественным фенотипическим проявлениям проследить за наследованием трудно контролируемых, связанных с ними хозяйственно ценных признаков.

Так как подбор производителей в некотором смысле является решающим фактором, то во избежание ошибок селекционерами часто используется как бы «пристрелочный» предварительный эксперимент, суть которого состоит в оценке производителей по потомству, что особенно важно при оценке признаков, не проявляющихся у самцов. Для оценки проводится скрещивание производителей-самцов с несколькими самками, определяются продуктивность и другие качества потомства. Чтобы оценить качество наследственности, например быков-производителей по жирномолочности, петухов по яйценоскости и т. д., признаки полученного потомства сравниваются со средне-породными и материнскими признаками.

Отдаленная гибридизация домашних животных менее продуктивна, чем у растений, так как преодолеть стерильность отдаленных гибридов невозможно, если она проявляется. Правда, в некоторых случаях отдаленная гибридизация видов с родственными хромосомными наборами не приводит к нарушению мейоза, а ведет к нормальному слиянию гамет и развитию зародыша у отдаленных гибридов, что позволило получить некоторые ценные породы, сочетающие полезные признаки обоих использованных в гибридизации видов. Например, получены породы тонкорунных архаромериносов, которые, как и архары, могут использовать высокогорные пастбища, недоступные для тонкорунных мериносов. Успешно завершились попытки улучшить породы местного крупного рогатого скота скрещиванием его с зебу и яками.

Следует отметить, что не всегда необходимо добиваться плодовитого потомства от отдаленной гибридизации. Иногда полезны и стерильные гибриды, как, например, веками использующиеся мулы -- стерильные гибриды лошади и осла, отличающиеся выносливостью и долговечностью Петров К.М. Взаимодействие общества и при-роды: Учебное пособие для вузов. - СПб: Химия, 1998. - 408с. .

5. Селекция микроорганизмов, методы

К микроорганизмам относятся, прежде всего, прокариоты (бактерии, актиномицеты, микоплазмы и др.) и одноклеточные эукариоты -- простейшие, дрожжи и др. Из более 100 тыс. видов, известных в природе микроорганизмов, в хозяйственной деятельности человека используется уже несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние 20-30 лет, когда были установлены многие генетические механизмы регуляции биохимических процессов, происходящих в клетках микроорганизмов.

Микроорганизмы играют исключительно важную роль в биосфере и в жизни человека. Многие из них продуцируют десятки видов органических веществ -- аминокислот, белков, антибиотиков, витаминов, липидов, нуклеиновых кислот, ферментов, пигментов, Сахаров и т. п., широко используемых в разных областях промышленности и медицины. Такие отрасли пищевой промышленности, как хлебопечение, производство спирта, некоторых органических кислот, виноделие и многие другие, основаны на деятельности микроорганизмов.

Микробиологическая промышленность предъявляет к продуцентам различных соединений жесткие требования, которые важны для технологии производства: ускоренный рост, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению микроорганизмами. Научная основа этой промышленности -- умение создавать микроорганизмы с новыми, заранее определенными генетическими свойствами и умение использовать их в промышленных масштабах.

Селекция микроорганизмов (в отличие от селекции растений и животных) имеет ряд особенностей:

- у селекционера имеется неограниченное количество материала для работы -- за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток;

- более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении;

- организация генома бактерий более проста: меньше генов в геноме, менее сложна и генетическая регуляция взаимодействия генов.

Эти особенности накладывают свой отпечаток на методы селекции микроорганизмов, которые во многом существенно отличаются от методов селекции растений и животных. Например, в селекции микроорганизмов обычно используются их естественные способности синтезировать какие-либо полезные для человека соединения (аминокислоты, витамины, ферменты и др.). В случае использования методов генной инженерии можно заставить бактерии и другие микроорганизмы продуцировать те соединения, синтез которых в естественных природных условиях им никогда не был присущ (например, гормоны человека и животных, биологически активные соединения).

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, которые интересуют селекционера. Для использования в микробиологической промышленности нужны высокопродуктивные штаммы, которые создают различными методами селекции, в том числе отбором среди природных микроорганизмов.

Отбору высокопродуктивных штаммов предшествует целенаправленная работа селекционера с генетическим материалом исходных микроорганизмов. В частности, широко используют различные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм, способный утилизировать углеводороды нефти. Часто прибегают к трансдукции (перенос гена из одной бактерии в другую, посредством бактериофагов), трансформации (перенос ДНК, изолированной из одних клеток, в другие) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся в плазмиде, а не в основной хромосоме. Поэтому увеличение путем амплификации числа этих плазмид позволяет существенно повысить производства антибиотиков.

Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания исходного материала в селекции. Вероятность (частота) возникновения мутаций у микроорганизмов (10-10 -- 10-6) ниже, чем у всех других организмов (10-6 --10-4). Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и быстро.

Для выделения мутаций служат селективные среды, на которых способны расти мутанты, но погибают исходные родительские особи дикого типа. Проводится так же отбор по окраске и форме колоний, скорости роста мутантов и диких форм и т. д.

Отбор по продуктивности (например, продуцентов антибиотиков) осуществляется по степени антагонизма и угнетения роста чувствительного штамма. Для этого штамм-продуцент высевается на «газон» чувствительной культуры. По размеру пятна, где отсутствует рост чувствительного штамма вокруг колонии штамма-продуцента, судят о степени активности (в данном случае антибиотической). Для размножения, естественно, отбираются наиболее продуктивные колонии. В результате селекции производительность продуцентов удается увеличить в сотни - тысячи раз. Например, комбинируя мутагенез и отбор в работе с грибом Penicillium, выход антибиотика пенициллина увеличили примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Роль микроорганизмов в микробиологической, пищевой промышленности, в сельском хозяйстве и других областях трудно переоценить. Особенно важно отметить то, что многие микроорганизмы для производства ценных продуктов используют отходы промышленного производства, нефтепродукты и тем самым производят их разрушение, предохраняя от загрязнения окружающую среду Колесников С.И. Экология. - Ростов-на-Дону: Феникс, 2003. - 384с..

6. Биотехнология, генетическая и клеточная инженерия

Биотехнология -- это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее Обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов -- микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.). Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других денных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.- М.: Айрис-пресс, 2005..

Генетическая инженерия -- один из важнейших методов биотехнологии. Она предполагает целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т. е. размножаться и контролировать синтез конечных продуктов. Можно выделить несколько разновидностей метода генетической инженерии в зависимости от уровня и особенностей его использования.

Генетическая инженерия используется в основном на прокариотах и микроорганизмах, хотя в последнее время начала применяться и на высших эукариотах (например, на растениях). Этот метод включает выделение из клеток отдельных генов или синтез генов вне клеток (например, на основе матричной РНК, синтезированной данным геном), направленную перестройку, копирование и размножение выделенных или синтезированных генов (клонирование генов), а также их перенос и включение в подлежащий изменению геном. Таким путем можно добиться включения в клетки бактерий «чужих» генов и синтеза бактериями важных для человека соединений. Благодаря этому в геном кишечной палочки удалось ввести ген синтеза инсулина из генома человека. Инсулин, синтезированный бактериями, используется для лечения больных сахарным диабетом.

Развитие генетической инженерии стало возможным благодаря открытию двух ферментов -- рестриктаз, разрезающих молекулу ДНК в строго определенных участках, и лигаз, сшивающих кусочки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы и встраивают необходимый ген, добиваясь впоследствии его включения в геном клетки-хозяина.

Клеточная инженерия -- это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.

Растительные клетки в культуре -- это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе -- получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.

Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся не только к разным родам, семействам, но и царствам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Клеточная инженерия широко используется в селекции растений. Выведены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие полезными свойствами и устойчивые к неблагоприятным условиям среды и болезням. Этот метод широко используется и для «спасения» ценных сортов, пораженных вирусными болезнями. Из их ростков в культуре выделяют несколько верхушечных клеток, еще не пораженных вирусом, и добиваются регенерации из них здоровых растений сначала в пробирке, а затем пересаживают в почву и размножают.

Заключение

Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача -- она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем -- непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Список литературы

1. Биология. / Н.П.Соколова, И.И.Андреева и др. - М.: Высшая школа, 1987. 304с.

2. Колесников С.И. Экология. - Ростов-на-Дону: Феникс, 2003. - 384с.

3. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.- М.: Айрис-пресс, 2005. 512с.

4. Петров Б.Ю. Общая биология. - СПб.: Химия, 1999. - 420с

5. Петров К.М. Взаимодействие общества и природы: Учебное пособие для вузов. - СПб: Химия, 1998. - 408с.

Приложение 1

Центры происхождения культурных растений (по Н. И. Вавилову)

Центры происхождения

Местоположение

Культурные растения

Южноазиатский тропический

Тропическая Индия, Индокитай, Южный Китай, о-ва Юго-Восточной Азии

Рис, сахарный тростник, цитрусовые, огурец, баклажаны и др. (50 % культурных растений)

Восточноазиатский

Центральный и Восточный Китай, Япония, Корея, Тайвань

Соя, просо, гречиха, плодовые и овощные культуры -- слива, вишня и др. (20 % культурных растений)

Юго-Западноазиатский

Малая и Средняя Азия, Иран, Афганистан, Юго-Западная Индия

Пшеница, рожь, бобовые культуры, лен, конопля, репа, морковь, виноград, чеснок, груша, абрикос и др. (14 % культурных растений)

Средиземноморский

Страны по берегам Средиземного моря

Капуста, сахарная свекла, маслины, кормовые травы (11 % культурных растений)

Абиссинский

Абиссинское нагорье Африки

Твердая пшеница, ячмень, сорго, кофейное дерево, бананы

Центральноамериканский

Южная Мексика

Кукуруза, какао, тыква, табак, хлопчатник

Южноамериканский

Западное побережье Южной Америки

Картофель, ананас, кокаиновый куст, хинное дерево

Приложение 2

Схема менделевского скрещивания горохов пурпурноцветковых с белоцветковыми

пурпурный цветок белый цветок

черными кружками обозначены доминантные аллели; белыми -- рецессивные

Приложение 3

Дигибридное скрещивание горохов, различающихся по форме и окраске семян

Приложение 4

Наследование формы гребня у кур

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать