Полевая форма материи

Полевая форма материи

39

Содержание

  • 1. Полевая форма материи. Фундаментальные типы взаимодействий в физике. Почему они так называются и в каких диапазонах времени и пространства проявляются наиболее сильно?
    • 2. Характеризуйте дискретность и непрерывность материи. Определить длину волны электромагнитного излучения, энергия кванта которого равна энергии покоя электрона. Масса покоя электрона равна 9,1х10-31 кг
    • 3. Опишите спектр электромагнитного излучения. Как были открыты инфракрасное и ультрафиолетовое излучение, рентгеновские лучи?
    • 4. Какие частицы составляют ядро атома, каковы его размеры? Как это было установлено?
    • 5. Опишите модификации углерода. Почему столь многообразны соединения углерода? Какие особенности строения атома углерода определили его роль в живой природе?
    • 5. Дайте понятие внутренней энергии. Какие виды внутренней энергии вы знаете? Как измеряется внутренняя энергия? В чем сущность первого начала термодинамики? На сколько градусов повысится температура воды при падении с плотины Саяно-Шушенской ГЭС (высота 222 м), если считать, что 30% потенциальной энергии воды расходуется на нагревание?
    • 6. Что такое фазовое равновесие, перегретая жидкость, процессы сублимации и десублимации? Опишите физическую картину процесса кипения. Как зависит точка кипения от внешнего давления? Приведите примеры проявления этих процессов в природе
    • 7. Охарактеризуйте строение и биологическое значение АТФ, почему АТФ называют основным источником энергии в клетке?
    • 8. Основные выводы учения Вернадского о биосфере. Охарактеризуйте понятия "экосистема", "биогеоценоз", "экологическая ниша", "биоценоз". Чем определяется их устойчивость, какие связи существуют между организмами в экосистеме, и как они моделируются?
    • 9. Каковы отличия науки от других областей культуры? Как соотносится наука с обыденным знанием, с религией?
    • Список использованной литературы
1. Полевая форма материи. Фундаментальные типы взаимодействий в физике. Почему они так называются и в каких диапазонах времени и пространства проявляются наиболее сильно?

Весомая (вещественная) материя или составляющие ее элементарные частицы представляют овеществленную форму полевой материи - возбужденные состояния поля. Таким образом, элементарные частицы - это те же самые поля, только возбужденные, т.е. любая элементарная частица - это поле, находящееся в возбужденном состоянии.

Волновая теория строения элементарных частиц является обобщением и последовательным развитием представлений о единстве природы вещества и поля, поэтому, как основа для рассмотрения этих вопросов, в тексте приводятся цитаты, которые по теме связаны с полевой природой материи. При этом предпочтение отдается материалистическим представлениям полевых процессов, а не метафизическим концепциям и интерпретациям, построенным на математическом формализме.

Т.е. элементарные частицы, согласно последовательной теории поля, представляют особые состояния полевого пространства (состояние поля с наименьшей энергией называется вакуумом).

С современной точки зрения частицы материи - это квантованные волновые образования, возбужденные состояния квантового поля, т.е. последовательное рассмотрение строения элементарных частиц надо проводить, исходя из анализа возмущений поля, представляющих возбужденные состояния. Поэтому изложение волновой теории строения элементарных частиц начинается с рассмотрения основ полевой природы материи, анализа свойств дискретных полевых потоков, возмущений поля и протекающих в них процессов. Возбужденные состояния поля представляют потоки индукции поля, которые графически изображаются в виде индукционных линий. "С квантовой точки зрения элементарные возбуждения электромагнитного поля обладают всеми свойствами частиц." (см. Курс физики. А.А. Детлаф, Б.М. Яворский. 2000. С.646)

Например, частица фотон представляет элементарное возбужденное состояние поля и, как все электромагнитные волны, фотоны состоят из электрических и магнитных потоков.

Возбуждения поля образованы полевыми потоками индукции, представляющими напряженность поля, т.е., чтобы понять, почему элементарные возбуждения электромагнитного поля обладают свойствами частиц, необходимо проанализировать свойства индукционных потоков поля.

Фундаментальными называют частицы, которые по современным представлениям не имеют внутренней структуры.12 фундаментальных фермионов (со спином 1/2 в единицах ) приведены в таблице 1. Последний столбец таблицы 1 - электрические заряды фундаментальных фермионов в единицах величины заряда электрона e.

Табл.1. Фундаментальные фермионы

Фундаментальные фермионы

Взаимодействия

Поколения

Заряд Q/e

1

2

3

лептоны

е

0

e

-1

кварки

u

c

t

+2/3

d

s

b

-1/3

12 фундаментальным фермионам соответствуют 12 антифермионов.

Взаимодействие частиц осуществляется за счет 4 типов взаимодействий: гравитационного, сильного, электромагнитного и слабого. Квантами соответствующих полей являются 12 фундаментальных бозонов.

Табл.2. Фундаментальные взаимодействия

Взаимодействие

Квант

Радиус

Квадрат константы

Примеры проявления взаимодействия

Сильное

глюоны

10-13

~1

Ядро, адроны

Электромагнитное

-квант

el =1/13710-2

Атом, -переходы

Слабое

W,Z

10-16

~10-6

Слабые распады частиц, -распад

Гравитационное

гравитон

~10-40

Сила тяжести

Квантами сильного взаимодействия являются нейтральные безмассовые глюоны. Фундаментальные фермионы, между которыми реализуется сильное взаимодействие - кварки - характеризуются квантовым числом “цвет", которое может принимать 3 значения. Глюоны имеют 8 разновидностей “ цветных" зарядов.

Квантами электромагнитного взаимодействия являются -кванты. Гамма-кванты имеют нулевую массу покоя. В электромагнитных взаимодействиях участвуют фундаментальные частицы, занимающие последние три строки в таблице 1, т.е. заряженные лептоны и кварки. Поскольку кварки в свободном состоянии не наблюдаются, а входят в состав адронов, т.е. барионов и мезонов, все адроны, наряду с сильными взаимодействиями, участвуют и в электромагнитных взаимодействиях.

Квантами слабого взаимодействия, в котором принимают участие все лептоны и все кварки, являются W и Z бозоны. Существуют как положительные W+ бозоны, так и отрицательные W-; Z-бозоны электрически нейтральны. Массы W и Z бозонов велики - больше 80 ГэВ/с2. Следствием больших масс промежуточных бозонов слабого взаимодействия является малая - по сравнению с электромагнитной константой - константа слабого взаимодействия. Нейтрино участвует только в слабых взаимодействиях. Глюоны, гамма-квант, W и Z бозоны являются фундаментальными бозонами. Спины всех фундаментальных бозонов равны 1.

Гравитационные взаимодействия практически не проявляются в физике частиц. Например, интенсивность гравитационного взаимодействия двух протонов составляет ~10-38 от интенсивности их электромагнитного взаимодействия.

Экспериментально установлено существование 12 фундаментальных фермионов и 12 фундаментальных бозонов (без учета античастиц), их свойства подробно исследованы.

Явления природы, проявляющиеся при энергиях частиц <100 МэВ, могут быть практически полностью объяснены взаимодействием фундаментальных фермионов 1-го поколения.2-е поколение фундаментальных фермионов проявляется при энергиях порядка сотен МэВ. Для исследования 3-го поколения фундаментальных частиц строят ускорители высоких энергий (E > 100 ГэВ).

2. Характеризуйте дискретность и непрерывность материи. Определить длину волны электромагнитного излучения, энергия кванта которого равна энергии покоя электрона. Масса покоя электрона равна 9,1х10-31 кг

Дискретность и непрерывность - свойства объектов природы, общества и мышления, обобщаемые в специальных научных, общенаучных и философских понятиях, отражающих их строение, структуру и происходящие процессы. Дискретность (по-лат. discretus) означает "прерывистый", состоящий из отдельных частей, раздельный. Синонимы понятия Дискретность. - атомистичность, диффузность и дифференциация, зернистость, корпускулярность, нецельность. Это также раздробленность, точечность. фрагментарность (от лат. fraction - доля, часть) и др. Непрерывность в философии и науке часто обозначается термином "континуальный" (от лат. continuum - непрерывный, сплошной). Но непрерывность - близка по смыслу к цельности и целостности, единству, неразрывности и др. Дискретность и непрерывность суть противоположности, которые отображают как делимость объектов любого рода, а также единство целого. Речь идет о дискретном как о множестве и "скоплении" объектов ("атомов" или "корпускул", элементов) разного рода. Но они бывают связаны в системе (т.е. в чем-то целом) многообразными отношениями и связями. Противоположность и связь Дискретность и непрерывность здесь относительна и условна, но если не было бы Дискретность, то не было бы непрерывности и, наоборот. Мы найдем понятия Дискретность и непрерывность в философских теориях бытия (онтологии) и в теориях познания (гносеологии или эпистемологии) в виде общего учения о прерывности и непрерывности мира. Бытие и время жизни объектов разного рода в данных условиях опирается на единство дискретности и непрерывности. Они связаны также с феноменами (и понятиями) строения, системы и структуры, организации и элемента, конечного, бесконечного и др. При данном типе строения Дискретность и непрерывность основаны на определенных отношениях, связях, взаимодействиях и свойствах более простых элементов на базе структурирования, складывания, соединения, распада и др. Чтобы понять их значение для темпорологии, надо знать природу самих Дискретности и непрерывности, а также свойства, формы и уровни действительности и мышления, сочетающиеся в данных условиях. Согласно диалектике, взаимодействие Дискретность с непрерывностью как полюсов создает движущее противоречие развития данного целого и его частей. Его обеспечивают различные механизмы изменения количества, качества, меры, разнообразия, формы и структуры, строения, состава, организации и др. В итоге, Дискретность и непрерывность - это диалектически взаимосвязанные и дополняющие друг друга, но противоположные по смыслу феномены и понятия (см.: А.Г. Спиркин. Непрерывность и прерывность …, с.433-34).

Абстрактнее, говоря на языке математики, Дискретность обозначает величины, между отдельными значениями которых заключено лишь какое-то конечное число их других значений. Вместе с тем, на деле, непрерывность вовсе не монотонно и единообразно, а это все же некое многообразие. В геометрии под непрерывностью обычно понимают совокупность всех точек на прямой или на её отрезке. В теории чисел, - это просто бесконечное множество всех действительных чисел, например, - всех дробей, заключенных между любыми двумя действительными целыми числами (как между 0 и 1 и т.п.) (см.: Большой словарь …, с.219, 328). В принципе, Дискретность и непрерывность - одни из главных понятий математики, например, арифметики и теории чисел, дифференциального и интегрального исчисления (как исчисления бесконечно малых), теории непрерывных функций. В дискретном и интервальном анализе, вычислительной математике и др., как правило, изменение какой-либо физической величины во времени - это изменение, происходящее через определенные промежутки времени (скачками). Дискретность и непрерывность - важнейшие понятия наук: от механики и физики до современной теории фракталов, а также и других наук, или они являются прямо их предметами.

Дискретность и непрерывность находятся непосредственно в основах философии и наук о материи и движении, в теориях пространства и времени, строения и структуры мира, отношениях вещества и поля, в биологии, социологии, логике и др. В теориях времени посредством Дискретность и непрерывность раскрывается объективное строение времени и его общего хода, а также последовательность событий и действии объектов разной природы, операций с ними, хронометрии (измерения хода времени), и т.п. Все концепции времени разделяют на статические и динамические, а также субстанциональные (от лат. substantia - сущность) и реляционные (от лат. relation - отношение). Но из них ни одна до сих пор не признана общепризнанной и доминирующей, они лишь сочетаются в смешанные по типу концепции (см.: Молчанов Ю.Б. Четыре концепции …).

Для расчета воспользуемся формулой А. Эйнштейна, который предложил рассматривать кванты электромагнитного излучения - фотоны - как движущиеся со скоростью света частицы, имеющие нулевую массу покоя. Их энергия равна

E = mc2 = hн = hc / л,

где m - масса фотона, с - скорость света в вакууме, h - постоянная Планка, н - частота излучения, л - длина волны.

Зная массу m=9,1х10-31 кг, h= 6.626068 Ч 10-34 м2 кг / с, с= 299 792 458 м / с найдем л

л=mc/h=9,1Ч10-31Ч299 792 458/6.626068 Ч 10-34=4,12Ч106м

3. Опишите спектр электромагнитного излучения. Как были открыты инфракрасное и ультрафиолетовое излучение, рентгеновские лучи?

После появления уравнений Максвелла стало ясно, что они предсказывают существование неизвестного науке природного явления - поперечных электромагнитных волн, представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного поля. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой с в отличие от всех прочих скоростей, которые принято обозначать буквой v.

Сделав это открытие, Максвелл сразу же определил, что видимый свет является "всего лишь" разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра - от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр - единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10-9 м) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.

Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны - сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857-1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.

Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года - всего через пять с небольшим лет после открытия радиоволн - итальянский инженер-физик Гульельмо Маркони (Guglielmo Marconi, 1874-1937) сконструировал первый работающий беспроволочный телеграф - прообраз современного радио, - за что в 1909 году был удостоен Нобелевской премии.

После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения.

Инфракрасные лучи.

Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей - как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям "видеть в темноте", и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например, для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

Ультрафиолетовые лучи.

К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400-10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных - тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать