Биологическая роль марганца
реднее содержание марганца в растениях равно 0,001%. Марганец служит катализатором процессов дыхания растений, принимает участие в процессе фотосинтеза. Исходя из высокого окислительно-восстановительного потенциала марганца можно думать, что марганец играет такую же роль для растительных клеток, как железо - для животных.

Марганец входит в состав либо является активатором ряда ферментативных систем; регулирует отношение Fe2+-Fe3+, тем самым влияя на окислительно-восстановительные процессы, совершающиеся с помощью железа.

Марганец усиливает гидролитические процессы, в результате чего нарастает количество аминокислот, способствует продвижению ассимилятов, образующихся в процессе фотосинтеза от листьев к корням и другим органам. По данным П.А. Власюка, марганец при нитратном питании растений ведет себя как восстановитель, тогда как при аммиачном - как окислитель. Благодаря этому с помощью марганца можно воздействовать на процессы сахарообразования и синтеза белков [19, с.23].

Благотворное влияние марганца на рост и развитие растений очевидно; так, И.В. Мичурин подметил, что у гибридных сеянцев миндаля под влиянием марганца срок первого плодоношения ускоряется на 6 лет. Этот факт явился первым описанным в литературе случаем замечательного ускорения роста и созревания растений под влиянием микроэлементов [26, с.18].

При недостатке марганца в почвах (низком содержании либо неблагоприятных условиях для усвоения его растениями) возникают заболевания растений, характеризующиеся в общем появлением на листьях растений хлоротичных пятен, которые в дальнейшем переходят в очаги некроза (отмирания). Обычно при этом заболевании происходит задержка роста растений и их гибель. У различных видов растений заболевание марганцевой недостаточностью имеет свои специфические проявления и получило соответственные названия.

Серая пятнистость злаков наблюдается у овса, ячменя, пшеницы, ржи, кукурузы. Характеризуется появлением на листьях узкой поперечной линии увядания. Листья загибаются по линии увядания и свешиваются вниз. У кукурузы на листьях появляются отдельные хлоротичные пятна, в дальнейшем отмирающие, что ведет к образованию отверстий на листьях. Болезнь распространена обычно на щелочных почвах при высоким содержании гумуса.

Болезнь сахарного тростника - на молодых листьях появляются длинные беловатые полосы хлоротичных участков, в дальнейшем краснеющие; на этих местах наступает разрыв листьев. Содержание марганца в листьях резко падает; наблюдаются лишь следы (вместо 0,003% в норме). Заболевание растений развивается на щелочных и нейтральных почвах. Внесение в почву серы, суперфосфатов (веществ, подкисляющих почву и повышающих содержание доступного марганца) излечивает или предупреждает названное заболевание [19, с.51].

Пятнистая желтуха сахарной свеклы, а также кормовой, столовой свеклы и шпината. В пространствах между жилками листьев появляются желтые хлоротичные участки; края листьев заворачиваются кверху. Содержание марганца в тканях больных растений резко уменьшается: в здоровом листе сахарной свеклы обычно 181 мг марганца на 1 кг сухого вещества, а в больном - лишь 13 мг на 1 кг.

Болотная пятнистость семян гороха. Поражаются как листья (легкий хлороз), так и, главным образом, семена гороха. На семенах появляются коричневые или черные пятна; на внутренней поверхности семядолей образуются полости. Рядом с больными могут находиться и здоровые семена.

Болезни плодовых растений проявляются в хлорозе листьев (у главной жилки), преимущественно старых (недостаточность железа проявляется главным образом на молодых листьях). Отмирают ветви, светлеют плоды. Сильнее всего поражается груша; вишня и яблоня - меньше [19, с.70].

Пятнистость листьев тунга. Заболевание встречается преимущественно в США. При низком содержании обменного марганца в почвах, на листьях между жилками появляются хлоротичные участки, разрастающиеся в пятна.

Встречается также серая пятнистость клубники и другие заболевания.

Явление недостаточности марганца у растений в виде приведенных выше специфических заболеваний наблюдается при значительном дефиците марганца в почвах, однако и при относительном недостатке подвижного марганца могут наблюдаться "стертые" формы недостаточности, проявляющиеся в задержке роста, уменьшении урожайности и т.п.

Обогащение растений марганцем ведет к улучшению роста, плодоношения деревьев и урожайности многих культур, что нашло практическое использование. В качестве удобрений применяют отходы марганцеворудной промышленности, отходы производства серной кислоты и др. [22, с.80].

Марганцевые отходы имеют преимущество перед чистыми марганцевыми солями: они используются растениями постепенно и действуют более эффективно. Доза удобрений зависит от источника получения отходов и от вида растений.

Внесение марганцевых отходов в почву в качестве удобрений положительно сказывается на урожайности сахарной свеклы, озимой пшеницы, кукурузы, картофеля, овощных культур и других культур, уменьшает полегаемость растений. Помимо обычного внесения марганцевых удобрений в почву, применяют и другие методы использования марганца, при которых исключаются неблагоприятные условия усвояемости марганца из почв [17, с.8].

Избыток марганца, так же как и его недостаток, неблагоприятно сказывается на растениях.

Л.П. Виноградов отметил значительные морфологические изменения у растений, произрастающих на богатых марганцем почвах (например в Чиатури).

По данным Л.Я. Леванидова, существуют растения, способные в значительной степени накапливать марганец; такие растения называют манганофилами. Способность концентрировать марганец не обязательно свойственна всем видам данного рода и не связана с систематическим положением растения. Концентраторами марганца являются лютик золотистый, полынь лекарственная, некоторые папоротники, сосна, береза, пасленовые [16, с.25].

Растения-манганофилы активно извлекают марганец из почв. Если растения-манганофилы произрастают на почвах с малым содержанием легко усвояемого марганца, то они особенно страдают от его недостатка. Так, на черноземе, бедном доступным марганцем, могут произрастать только такие растения-манганофилы, как береза, мобилизующая марганец своими кислыми корневыми выделениями [19, с.63].

2.4 Марганец в минеральном питании растений

Растущее и развивающееся растение следует рассматривать с биохимической точки зрения как систему, открытую, и изменяющуюся по емкости.

Растение получает энергию и частично расходует ее в процессе дыхания. При этом общие запасы энергии в ходе роста растения возрастают. Запас энергии можно приближенно считать равным теплоте сгорания сухой массы растения, так как при сгорании вещества растительной ткани, синтезированной из углекислоты и воды, возвращаются к исходному состоянию.

Растение получает воду и в значительной степени расходует ее на транспирацию. В этом отношении оно является открытой системой с относительно небольшим удержанием проходящего вещества (воды).

И, наконец, растение накапливает минеральные вещества, но не выделяет их. Некоторая потеря минеральных веществ все же имеет место. Тукей и Морган [17] установили, что при промывании надземных частей растения водой имеет место потеря кальция, магния, марганца, калия и натрия. Однако, в естественных условиях эти потери невелики. Авторы оценивают унос калия из листьев яблони с дождевой водой в 15-30 кг/гектар в год - менее, чем один процент калия, находящегося в листьях.

С этой небольшой поправкой мы можем принять, что минеральные вещества только накапливаются и перераспределяются в тканях растения и уходят из системны живого растения только в составе отделяющихся тканей и органов (семена, лиственный опад, пробковый слой коры и др.).

В отношении накопления минеральных веществ растение функционирует как практически замкнутая система возрастающей, емкости, то есть как система, стремящаяся к насыщению.

Поглощение минеральных веществ растением - результат ряда процессов физико-химических, биохимических и физиологических.

В данной работе (отчасти в порядке постановки вопроса) мы рассматриваем процесс поглощения растением одного из важнейших микроэлементов - марганца в условиях избыточного обеспечения растения всеми нужными элементами, то есть в условиях водных культур.

Общеизвестно, что усвоение того или другого иона корнями растения представляет собою резко избирательный физиологический процесс. Поглощение ионов не зависит от их размера, подвижности, степени гидратации, даже заряда (однозарядный нитрат ион и трехзарядный фосфат ион поглощаются корнями в больших количествах, чем двухзарядный сульфат ион).

Основные факторы, определяющие поступление иона в растение,-. это концентрация иона в внешней среде и, главное, потребность организма в соответствующем элементе.

Питательные элементы делятся на макроэлементы: азот фосфор, калий, натрий, магний, кальций, среднее содержание которых в растении 0,2-0,5%, и микроэлементы.

В прошлом был предпринят ряд попыток классифицировать элементы по их роли в биосфере. Такие классификации предлагали Тэчер [16], Баудиш [11], М.Я. Школьник [8].

Однако, в последние годы новые схемы классификации элементов по их роли в питании растений не появляются. Это не случайно". По-видимому, при попытке дать такую классификацию возникают значительные принципиальные трудности, вызванные полифункциональностью и взаимозаменяемостью питательных элементов.

Под полифункциональностью мы понимаем то, что один и тот же элемент используется в различных биохимических системах. Так, например, магний в неионной форме входит в состав хлорофилла, а магний ион является активатором многих ферментных систем.

Взаимозаменяемость приводит к тому, что одна и та же биохимическая функция обеспечивается разными элементами. Марганец не может заменить магний в синтезе хлорофилла, но не менее двенадцати ферментных систем, активируемых магнием, активируются и двухвалентным марганцем. Развиваемое М. Я - Школьником [9] учение о - неспецифической и специфической функции микроэлементов позволяет в достаточной степени объяснить этот вопрос.

К абсолютно необходимым для любого растения элементам, кроме микроэлементов, относятся железо, марганец, бор, цинк, медь, молибден, кобальт. Среднее содержание этих элементов в растении колеблется от 200 мг/кг (средняя величина для железа), до 0,1 мг/кг для молибдена. Все они - металлы переменной валентности, за исключением бора, специфическая роль которого выяснена М.Я. Школьником [10], и цинка. Последний хотя и имеет постоянную валентность, но, по-видимому, дает растворимые комплектные перекиси.

Необходимость этих элементов для растений доказана тем, что при их исключении из питательной среды растения гибнут. Другие металлы переменной валентности никель, хром, кадмий, - могут быть полезными, но не необходимыми. Их действие освещено в многочисленных работах О.К. Добролюбского. Наконец, некоторые элементы нужны, по-видимому только определенной группе растений, как например, селен астрагалам.

Марганец по его содержанию в растениях стоит непосредственно после железа. Он участвует во многих ферментных системах как окислительно-восстановительных, так и гидролитических. Согласно нашему предположению [3], марганец осуществляет в определенной группе растений (дубильных растениях) - специфическую функцию - уравновешивание отрицательного потенциала, возникшего в результате накопления больших количеств сильных восстановителей (в данном случае танидов). Для осуществления этой функции требуется гораздо больше марганца, чем для всех остальных путей его использования. Содержание марганца в зеленых частях растений - танидоносов 100-1000 мг на килограмм сухого веса и выше, а в обычных растениях-20-80 мг/кг и очень редко 100 мг/кг. Поэтому, хотя марганец в растении танидоносе по существу так же полифункционален, как и в обычном растении, но его поглощение можно рассматривать как поглощение монофункционального элемента, так как основное количество, марганца используется на уравновешивание восстанавливающего действия танидов и других радуктонов, а прочие функции выполняются относительно небольшой частью элемента.

Поглощение марганца растением танидоносом поэтому особенно удобно для рассмотрения.

Количество поглощенного растением марганца зависит от его количества и концентрации в питательном растворе.

При достаточном количестве раствора низкая концентрация ионов марганца не является препятствием для жизнедеятельности растений манганофилов. По нашим данным, концентрация марганца в воде реки Миасс меньше, чем 0,005 мг/л, а произрастающие в ней не связанные с грунтом гидрофиты содержат марганец в количествах даже больших, чем в наземных растениях (водокрас лягушечный - 520-720 мг/кг, телорез сабуровидный - 580 мг/кг), то есть при синтезе одного килограмма сухой массы извлекается, весь марганец из нескольких десятков кубометров воды.

В условиях лабораторных водных культур вследствие ограниченности объема и отсутствия движения воды низкие концентрации марганца уже не в состоянии обеспечивать жизнедеятельность растения манганофила. Практически манганофилы погибают при концентрации марганца порядка 1 мг/л.

Обобщенная схема влияния уровня снабжения марганцем на рост, и развитие растений представлена на графике. Ее можно распространить и на другие микроэлементы, но конкретные факты, которые мы приводим в подтверждение нашей схеме,/относятся преимущественно к марганцу.

1) При весьма низком уровне снабжения необходимым микроэлементом (участок АВ) растение гибнет. Обычно этот весьма' низкий уровень рассматривают как полное исключение микроэлемента, но растение манганофила гибнет при аналитически определяемом содержании марганца в питательной среде (менее одного мг/л, в то время как обычные питательные смеси содержат 0,2-0,5 мг/л марганца).1

2) При малом поступлении марганда растение страдает от болезней, вызванных недостатком марганца. Болезни "марганцевой недостаточности" описаны для овса, томатов, сахарной свеклы и многих других культурных растений. Относительно таких же болезней у дикорастущих нам известна только работа Ингелынтадт [14], описывающая хлороз, возникающий вследствие недостатка марганца у березы бородавчатой, то есть у типичного манганофила.

Влияние усвояемого Мп на урожай и содержание в растениях, (масштаб произвольный)

3) При умеренном недостатке марганца растение не проявляет внешних признаков заболеваний, но его развитие замедлено и урожай снижен (участок ВС). Имеет место то, что Финк [12] назвал "скрытым недостатком" ("latente Mangel"). Применение марганца как микроудобрения вызывает усиление биосинтеза, то есть повышение урожая.

Марганец поступает в оптимальных количествах. Растение дает максимальный урожай (участок СД). По-видимому, этот-оптимум лежит в довольно широких пределах. Биохимические системы могут иммобилизовать избыточный поглощенный марганец, а физиологические механизмы корневой системы - перестроиться в направлении уменьшения его поглощения.

По мере возрастания содержания доступного марганца во внешней среде наступает момент, когда система регуляции поглощения уже не может справиться с своей задачей. Эффективность биосинтеза уменьшается - урожай снижается, но видимых признаков отравления еще нет. К сожалению, в нашей литературе работы, о возможности снижения урожая при применении микроэлементов публикуются весьма редко, но те, которые есть, исходят из наиболее серьезных агрохимических школ - латвийской и украинской.

Токсическое действие избытка марганца приводит к видимому заболеванию, большей частью в виде некротических пятен на листьях.

При достаточно-большом количестве поглощенного марганца растение гибнет.

Нередко в листьях растения, погибшего от отравления марганцем, оказывается меньше марганца, чем в листьях нормального растения (точки fi, f2 графика). Это вполне понятно - токсическая доза марганца в первую очередь поражает корни, и они не могут обеспечить поступления марганца и других питательных элементов в остальные части растения,

Можем ли мы, как это пытались сделать Гудаль и Грегори [13] установить оптимальное содержание марганца в листьях какого-либо конкретного вида растений? Задача эта весьма трудна. Во-первых, мы определяем общее содержание марганца в ткани, а не содержание активного марганца.

Во-вторых, потребность в марганце меняется в зависимости от фазы развития, а также внешних условий: температуры, обеспечения водой и т.д. В монографии П.А. Власюка [2] показано, что неблагоприятные погодные условия (засуха) привели к снижению урожая при применении марганца. С.А. Абаева [1] считает, что хлопчатник испытывает наибольшую потребность в марганце в первые фазы развития, когда идет интенсивный процесс листообразования. С этим утверждением мы вполне согласны.

Наконец, нельзя забывать, что действие марганца может быть усилено или ослаблено влиянием других катионов. Теория Шайва [15] утверждает, что для растения существенно важно не абсолютное количество марганца и железа, а их соотношение. При высоком Mn/Fe железо переходит в трехвалентное и возникает хлороз от недостатка железа, При низком Mn/Fe возникает хлороз от избытка железа. Ряд авторов критикуют теорию Шайва, другие с ней соглашаются. По нашему мнению, если содержание любого из этих элементов ниже определенного минимума, никакое повышение содержания другого не спасет растение. В области достаточного снабжения обоими элементами, соотношение, подмеченное Шайвом по-видимому, действительно играет роль, особенно для растений, не накапливающих редуктоны.

Многие авторы отмечают антагонизм марганца и кальция, но этого вопроса мы в данной работе не касаемся. Он проявляется, по-видимому, всего ярче на участках скрытого избытка и недостатка (участок ВС и СЕ нашей диаграммы). Действие антагонистичного иона проявляется в расширении или сужении участков. АВ, СД и EF.

В условиях лабораторных водных культур и достаточно точных полевых опытов, все внешние факторы выравниваются и появляется возможность установить связь поглощения марганца с его концентрацией во внешней среде и в тканях растения.

В первую очередь мы констатируем, что выращенные в водных культурах растения содержат больше питательных веществ, чем растения, развивавшиеся в открытом грунте. Так, например, в полевых опытах с горцем забайкальским.

Л.С. Хромова получила максимальное содержание марганца в листьях - 169 мг/кг, а в водных культурах содержание марганца достигло 1250 мг/кг. В водных культурах ивы мы имели концентрацию марганца в листьях, до 1200 мг/кг а в 13 анализах листьев дикорастущих ив содержание марганца ни разу не превысило 250 мг/кг. Ясно, что здесь мы имеем дело не с правилом, а скорее с тенденцией, но все же можно сказать, что лабораторные образцы, из водных культур содержат больше марганца, чем дикорастущие растения, и содержат Фоль1116 микроэлементов, чем растения, выросшие в. открытом грунте.

Очевидно, при худшем снабжении микроэлементами, он используется более интенсивно. В этой работе мы приводим результаты пятнадцати серии экспериментов с водными культурами растений, танидоносов при выращивании их на различных питательных средах с переменным содержанием марганца. Всего поставлено и - проанализировано 82 опыта. К сожалению, не во всех Дуадях удалось провести точный учет биомассы. Фактический материал мы в этой статье не приводим, он. опубликован: в, WJrlo],

[6], [7]. При этом из рассмотрения исключен один опыт. В нем ветви ивы дали маленькие листья с очень высоким содержанием марганца и, не получая марганец из внешней среды, погибли. Поскольку парадоксальный результат (растение не получило марганца извне, а в листьях его много) вполне объясним поступлением марганца из коры, мы вправе не учитывать этот опыт.

Содержание марганца на один килограмм сухого веса меняется для данной концентрации марганца в питательном растворе в весьма широких пределах. При этом решающим фактором является вид растения. Изменения состава питательного раствора имеют меньшее значение, хотя цинк, по-видимому, способствует мобилизации марганца из коры, но специфичность действия марганца да танидоносы, неоднократно доказанная раньше, подтверждается и работой [6]. Данные, собранные в таблице, подтверждают предложенную нами в этой статье схему. На их основании можно сделать следующие выводы.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать