Биосинтез 2Н-меченого инозина высокого уровня дейтерированности

Биосинтез 2Н-меченого инозина высокого уровня дейтерированности

Биосинтез 2h-меченого инозина высокого уровня дейтерированности

О. В. МОСИН*

*Московская государственная академия тонкой химической технологии им. М. В. Ломоносова, 117571 Москва, просп. Вернадского, 86.

Осуществлен биосинтез 2Н-меченого пуринового рибонуклеозида инозина (выход 3.9 г c 1 л ростовой среды) с использованием адаптированного к дейтерию штамма Bacillus subtilis в тяжеловодородной среде высокого уровня дейтерированности (89-90 ат.% 2Н) с 2% гидролизатом биомассы метилотрофной бактерии Brevibacterium methylicum как источника 2Н-меченых ростовых субстратов (условия синтеза: синтетическая среда М9 с 98% 2Н2О и 2% [U-2H]метанолом, инкубационный период 5-6 сут при 370С). Исследование уровня дейтерированности биосинтетического инозина методом масс-спектрометрии FAB выявило полиморфизм включения дейтерия в молекулу (изотопный состав инозина: 4 ат. 2Н, 20%; 5 ат. 2Н, 38%; 6 ат. 2Н, 28%; 7 ат. 2Н, 14%) с включением дейтерия в рибозный и гипоксантиновый фрагменты молекулы.

Ключевые слова: Bacillus subtillis; 2Н-меченый инозин; биосинтез; масс-спектрометрия FAB.

ВВЕДЕНИЕ

В настоящее время во всем мире растет интерес к получению природных биологически активных соединений (БАС), меченных стабильными изотопами (2Н, 13С, 15N, 18О и др), которые необходимы для многочисленных биохимических и диагностических целей [1], структурно-функциональных исследований [2], а также для изучения клеточного метаболизма [3]. Тенденции к предпочтительному использованию стабильных изотопов по сравнению с радиоактивными аналогами обусловлены отсутствием радиационной опасности и возможностью определения локализации метки в молекуле спектроскопией 1Н ЯМР [4, 5], ИК- и лазерной спектроскопией [6], а также масс-спектрометрией [7]. Развитие технической и компъютерной оснащенности аналитических методов позволило существенно повысить эффективность проведения биологических исследований de novo, а также изучать структуру и механизм действия БАС на молекулярном уровне [8]. Большое научно-прикладное значение в этом аспекте имеют соединения нуклеиновой природы, содержащие дейтериевую метку в углеродном скелете молекулы [9]. В частности, 2Н-меченые рибонуклеозиды в ближайшем будущем смогут найти применение в матричных синтезах молекул дейтерированных РНК для изучения их пространственной структуры и конформационных изменений [10].

Важным моментом в исследованиях с применением изотопно меченых БАС является их доступность. Дейтериймеченые БАС могут быть синтезированы с использованием химических, ферментативных и биосинтетических методов [11, 12]. Однако химические синтезы часто многостадийны, требуют больших расходов ценных реагентов и меченых субстратов и приводят к конечному продукту, представляющему собой рацемическую смесь D- и L-форм, для разделения которых требуются специальные методы [13]. Более тонкие синтезы меченых БАС связаны с комбинацией химических [14] и ферментативных подходов [15, 16]. Стратегия синтеза изотопно-меченых БАС более подробно освещена в работе ЛеМастера [17].

Для многих научно-практических целей биотехнология предлагает альтернативный химическому синтезу биосинтетический метод получения дейтериймеченых БАС, который приводит к высоким выходам синтезируемых продуктов, к эффективному включению дейтерия в молекулы и к сохранению природной конфигурации синтезируемых соединений [18]. Традиционным подходом при этом остается предложенный Креспи метод выращивания штаммов-продуцентов в средах с максимальными концентрациями дейтерия [19]. Однако основным препятствием является недостаток 2Н-меченых ростовых субстратов с высоким уровнем дейтерированности. Прежде всего это связано с ограниченной доступностью и дороговизной самого высокоочищенного дейтерия, выделяемого из природных источников. Природная распространенность дейтерия составляет лишь 0.015% (относительно общего количества элемента), однако несмотря на невысокое содержание дейтерия в пробах разработанные в последние годы методы обогащения и очистки позволяют получать 2Н-меченые субстраты высокого уровня изотопной чистоты [20].

Начиная с первых экспериментов Даболла и Кокса по выращиванию природных объектов в тяжелой воде, разрабатываются подходы с использованием гидролизатов 2Н-меченой биомассы как ростовых субстратов для синтеза штаммов-продуцентов БАС [21, 22]. Однако эксперименты обнаружили бактериостатический эффект 2Н2О, заключающийся в ингибировании жизненно-важных функций клетки, оказываемой 40% 2Н2О на растительные клетки [23] и 80-90% 2Н2О на клетки простейших и бактерий [24]. Попытки использовать для синтеза в 2Н2О природных объектов различной таксономической принадлежности, включая бактерии, микроводоросли [25] и дрожжи [26] предпринимались в течение длительного времени. Однако широкого распространения в биотехнологии они не получили ввиду трудности синтеза, использования сложных комплексных ростовых сред, сложности технологической схемы синтеза и т. п. Поэтому целый ряд практических вопросов биосинтеза 2Н-меченых БАС в 2Н2О остается не выясненным.

Более перспективны схемы синтеза с использованием в качестве 2Н-меченых ростовых субстратов биомассы метилотрофных бактерий, ассимилирующих метанол по рибулозо-5-монофосфатному (РМФ) и сериновому пути фиксации углерода, интерес к которым возрастает благодаря интенсивному развитию технологии химического синтеза метанола [27, 28]. Уровень ассимиляции биомассы метилотрофов клетками простейших организмов и эукариот составляет 85-98%, а их производительность, измеренная по уровню биоконверсии метанола в клеточные компоненты, достигает 50% [29]. Как было показано нами раннее, метилотрофные бактерии очень неприхотливые объекты, растут на минимальных средах с 2-4% метанолом, в которых другие контаминантные бактерии не размножаются и достаточно легко адаптируются к максимальным концентрациям 2Н2О, что существенно для синтеза 2Н-меченых БАС [30, 31]. Большой научно-практический интерес к использованию дейтерированной метилотрофной биомассы для синтеза продуцентов рибонуклеозидов определил цель настоящей работы, связанной с изучением принципиальной возможности биосинтеза 2Н-меченого инозина штаммом Bacillus subtilis за счет использования гидролизата факультативных метилотрофных бактерий Brevibacterium methylicum.

Таблица 1. Изотопный состав ростовых сред и биосинтетические характеристики B. methylicum

Номер опыта

Компоненты среды, об.%

H2O 2H2O Метанол [U-2H]

Метанол

Лаг-период, ч

Выход микробной биомассы, % от контроля

Время генерации, ч

1

98

0

2

0

20

100

2.2

2

98

0

0

2

30

92.3

2.4

3

73.5

24.5

2

0

32

90.6

2.4

4

73.5

24.5

0

2

34

85.9

2.6

5

49.0

49.0

2

0

40

70.1

3.0

6

49.0

49.0

0

2

44

60.5

3.2

7

24.5

73.5

2

0

45

56.4

3.5

8

24.5

73.5

0

2

49

47.2

3.8

9

0

98.0

2

0

58

32.9

4.4

10

0

98.0

0

2

60

30.1

4.9

10'

0

98.0

0

2

40

87.0

2.8

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для синтеза 2Н-меченого инозина использовали мутантный штамм грамположительных бактерий Bacillus subtilis (предварительно адаптированный к дейтерию скринингом до отдельных колоний), который из-за нарушения метаболических путей регуляции биосинтеза пуриновых рибонуклеозидов синтезирует в стандартных условиях выращивания (дрожжевая среда, поздний экспоненциальный рост, 32-340С) 17 г инозина на 1 л культуральной жидкости (КЖ) [32]. Максимальный выход инозина достигался при использовании природной протонированной среды, содержащей в качестве в качестве источников ростовых факторов и аминного азота 2% БВК дрожжей, а в качестве источника углерода и энергии глюкозу (не менее 12 мас.%). При проведении синтеза требовалось заменить протонированные ростовые субстраты их дейтерированными аналогами, а также использовать 2Н2О высокого уровня изотопной чистоты. Для решения поставленной задачи использовали адаптированный к дейтерию штамм факультативных метилотрофных бактерий Brevibacterium methylicum с 50% уровнем биоконверсии метанола (при эффективности конверсии 15.517.3 г сух. биомассы на 1 г потребленного субстрата) [33]. Проведение адаптации для B. methylicum определялось необходимостью улучшить ростовые характеристики штамма в максимально дейтерированной среде, поэтому использовали ступенчато-увеличивающийся градиент концентрации 2Н2О в ростовых средах в присутствии 2% метанола (табл. 1). Для изучения влияния уровня дейтерированности источника углерода на ростовые параметры штамма в опытах (1, 3, 5, 7 и 9) использовали протонированный метанол, а в опытах (2, 4, 6, 8 и 10) [U-2Н]метанол. Согласно полученным данным замена протонированного метанола его дейтерированным аналогом в условиях одинаковой концентрации 2Н2О в среде приводила к небольшим уменьшениям ростовых характеристик штамма (табл. 1, опыты 2, 4, 6, 8 и 10). Поэтому в дальнейших опытах использовали среды с 2Н2О и [U-2Н]метанолом. На контрольной протонированной среде (1) с водой и метанолом продолжительность лаг-периода и времени клеточной генерации B. methylicum составили 20 и 2.2 ч, а выход микробной биомассы 200 г с 1 л КЖ (табл. 1, опыт 1). В промежуточных опытах (2-10) биосинтетические параметры изменялись пропорционально концентрации 2Н2О. Найденная закономерность заключалась в увеличении продолжительности лаг-периода и времени клеточной генерации при уменьшении выходов микробной биомассы с фиксированием самых низких значений этих параметров в максимально дейтерированной среде с 98% 2Н2О и 2% [U-2H]метанолом (табл. 1, опыт 10). За ходом адаптации, условия которой показаны в опыте 10' (табл. 1) наблюдали, снимая динамики роста исходного (б) и адаптированного к дейтерию (в) штамма в максимально дейтерированной среде М9 (рис. 1, контроль (а) получен в протонированной среде), а также по изменению продолжительности лаг-периода, времени генерации и выходов микробной биомассы (рис. 2). В отличие от адаптированного штамма (в), ростовые динамики исходного штамма (б) в максимальной дейтерированной среде ингибировались дейтерием (рис. 1).

Выход микробной биомассы у адаптированного штамма (в) уменьшался на 13% по сравнению с контрольными условиями (рис. 2, а) при увеличении времени генерации до 2.8, а продолжительности лаг-периода до 40 ч (рис. 2, в). Адаптированный штамм возвращался к нормальному росту при переносе в протонированную среду после пролонгированного лаг-периода, что доказывает фенотипическую природу феномена адаптации, хотя теоретически не исключается, что эффект реверсии стабильно сохраняется при росте в 2Н2О, но маскируется при переносе клеток в протонированную среду. Улучшенные ростовые характеристики адаптированного метилотрофа существено упрощают схему синтеза 2Н-меченой биомассы, оптимальным условиям которой удовлетворяет максимально дейтерированная среда М9 с 98% 2Н2О и 2% [U-2Н]метанолом с инкубационным периодом 5-6 сут при 370С.

Схема синтеза 2Н-меченого инозина разрабатывалась с учетом способности метилотрофных бактерий синтезировать большое количество белка (выход 50% от веса сухого вещества), 1517% полисахаридов, 1012% липидов (в основном, фосфолипиды) и 18% зольных веществ [34]. Гидролиз биомассы проводили автоклавированием в 0.5 н. 2НCl (в 2Н2O), чтобы обеспечить высокие выходы этих соединений и минимизировать реакции обратного (1Н-2Н) обмена в аминокислотных остатках молекул белков. Качественный и количественный состав ароматических аминокислот метилотрофного гидролизата изучали в дейтерированной среде М9 на катионообменной колонке Biotronic LC-5001 (ФРГ) с сульфированной смолой UR-30, а уровни дейтерированности молекул масс-спектрометрией электронного удара метиловых эфиров N-диметиламинонафталин-5-сульфонильных производных аминокислот. Гидролизат представлен пятнадцатью идентифицированными аминокислотами (за исключением пролина, который детектировался при 440 нм) при выходах аминокислот, сопоставимом с потребностями штамма в источниках углерода и аминного азота (табл. 2). При этом индикатором, определяющим высокую эффективность включения дейтерия в синтезируемый продукт служит высокий уровень дейтерированности молекул аминокислот, который варьирует от 49% для лейцина/изолейцина до 97.5% для аланина (табл. 2).

Биосинтетические характеристики штамма B. subtilis снимали в протонированной дрожжевой среде с обычной водой и синтетической тяжеловодородной среде с 2Н2О и 2% 2Н-меченым метилотрофным гидролизатом B. methylicum (рис. 3). Отмечена корреляция в характере изменения ростовых динамик (рис. 3, , ), выхода инозина (рис. 3, 1б, 2б) и ассимиляции глюкозы (рис. 3, , ). Максимальный выход инозина (17 г/л) зафиксирован в опыте (рис. 3, ) на протонированной среде при уровне ассимилируемой глюкозы 10 г/л (рис. 3, ). На тяжеловодородной среде выход инозина снижался в 4.4 (3.9 г/л) (рис. 3, ), а уровень ассимиляции глюкозы в 4 раза, о чем свидетельствует 40 г/л неассимилируемой глюкозы в КЖ (рис. 3, ).

Таблица 2. Аминокислотный состав метилотрофного гидролизата и уровни дейтерированности молекул

Аминокислота

Выход, % от сухого веса 1 г биомассы

Величина молекулярного иона Мr

Количество включенных атомов дейтерия

в углеродный скелет молекулы

Уровень дейтерированности молекул, % от общего количества атомов водорода

Глицин

9.69

324

2

90.0

Аланин

13.98

340

4

97.5

Валин

3.74

369

4

50.0

Лейцин

7.33

383

5

49.0

Изолейцин

3.64

383

5

49.0

Фенилаланин

3.94

420

8

95.0

Тирозин

1.82

669

7

92.8

Серин

4.90

355

3

86.6

Треонин

5.51

не детектировался

Метионин

2.25

не детектировался

Аспарагин

9.59

396

2

66.6

Глутаминовая кислота

10.38

411

4

70.0

Лизин

3.98

632

5

58.9

Аргинин

5.27

не детектировался

Гистидин

3.72

не детектировался

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать