Работа электрических органов рыб
p align="left">А вот один из красивых опытов, который доказывает вторую половину гипотезы Митчела - что МП может быть использован для синтеза АТФ. Этот опыт был поставлен в 1967 г. Прессманом. Митохондрии выдерживали в среде с высокой концентрацией К+, так что он накапливался внутри них. Затем их переносили в среду без питательных веществ и кислорода и в среду вводили валиномицин - антибиотик, который повышает проницаемость мембраны для К+. Калий начинал выходить из митохондрий, и на их мембране возникал калиевый потенциал покоя. И митохондрии начинали синтезировать АТФ.

Точно так же было показано, что МП возникает под действием света в хлоропластах. В этом случае удалось найти такой объект, что в хлоропласт можно было ввести микроэлектрод и прямо измерить этот потенциал. Такая работа была сделана сотрудниками кафедры биофизики МГУ А.А. Булычевым, В.К. Андриановым, Г.А. Куреллой и Ф.Ф. Литвиным.

Раньше мы уже говорили, что в самых разных клетках есть ионные насосы, которые работают, используя энергию АТФ. Теперь оказывается, что для выработки АТФ требуется работа протонного насоса, который использует энергию пищи или света. Так что в каждой клетке работает «каскад насосов».

В митохондриях и в «дышащих» бактериях за счет окисления пищи наружу выкачиваются протоны, а внутри митохондрий синтезируется АТФ, поэтому часть выработанной электроэнергии затрачивается на транспортные расходы: приходится доставлять АТФ из митохондрии в протоплазму клетки, а исходные продукты, нужные для ее синтеза, доставлять внутрь митохондрий. Те же процессы идут и у фотосинтезирующих бактерий и цианобактерий, только там источником энергии является свет.

А вот хлоропласты растений устроены иначе. Внутри них имеются особые мембранные пузырьки - тилакоиды, мембрана которых «вывернута наружу», как это искусственно делали с мембраной митохондрий Скулачев и Либерман. В тилакоидах протоны заканчиваются внутрь их, а АТФ синтезируется на их наружной поверхности. Мембрана митохондрий содержит много складок; можно думать, что из таких замкнувшихся «впячиваний» и возникли тилакоиды. Ведь клетки часто делают из своей мембраны пузырьки, с помощью которых поглощают из внешней среды нужные молекулы.

Вспомним теперь на минуту историю открытия мембраны. Она долго оставалась гипотетической структурой, которую предсказывали на основе изучения осмоса. Теперь, наконец-то, ученые, можно сказать, держат ее в руках. И вот оказывается, что есть мембрана на поверхности клеток, а внутри есть мембрана хлоропласта, а внутри него - мембрана тилакоидов. А кроме того, в клетках масса других мембранных структур. Вы, наверно, помните девиз «Наутилуса»: «Подвижный в подвижном». Девиз всех клеток; «Мембраны в мембране»,

Работу митохондрии действительно можно изобразить как работу электростанции. Дыхательная система ферментов гонит ток протонов наружу, создавая потенциал на мембране, - это работает генератор; потом они текут по другим участкам мембраны митохондрии внутрь и энергия тратится на синтез АТФ - это потребитель. Значит, в митохондрии находятся и сама электростанция, и потребители электроэнергии. Если сделать

короткое замыкание, то у потребителей «гаснет свет», прекращается синтез АТФ. А если перестать давать вещества, необходимые для синтеза АТФ, т.е. выключить потребитель, разомну ть цепь, то станция перестает потреблять энергию - прекращается дыхание.

Нагрузку-потребитель на рис. 69 лучше всего представлять себе в виде «электродвигателя». Дело в том, что этот потребитель, как электродвигатели, обратим. Если внутри митохондрий имеется запас АТФ, а потенциал на ее мембране снижен, то АТФ начинает распадаться и гнать протоны наружу, подобно тому как электродвигатель, еслиегокрутить механическим двигателем, начинает отдавать энергию назад в сеть. В митохондриях при их реальной работе эта обратимость не используется. Иначе обстоит дело у бактерий. В 1977 г. было показано, что у стрептококков, когда они получают энергию за счет гликолиза и синтезируют АТФ, используется «обратимость двигателя». Часть синтезированной АТФ бактерии тратят на создание потенциала на мембране, который необходим им для транспорта метаболитов внутрь клетки.

Гипотеза Митчела превратилась в одну из основ биоэнергетики. Но не следует думать, что она решила все вопросы. Дальше надо было выяснить, как именно работают ферменты, создающие МП митохондрий, и ферменты, синтезирующие АТФ. Кое-что о работе этих молекулярных машин выяснено, и тот, кто заинтересовался этим вопросом, с большой пользой прочитает книгу В.П. Скулачева.

Мы же хотим еще раз подчеркнуть, что «животное электричество» оказалось присущим не только нервам и мышцам. Каждая клетка, которая дышит, каждая клетка, которая способна к фотосинтезу, использует электрическую энергию. Митохондрии и хлоропласта являются самыми настоящими электростанциями клетки, которые преобразуют горючее или свет в электроэнергию,

Бактерии - первые электрики Земли. Они изобрели электромотор с подшипником, передачу электроэнергии по проводам и электрические аккумуляторы

Животные клетки содержат митохондрии. Клетки бактерий - сами себе электростанции. Они тоже способны синтезировать АТФ за счет пищи или света, за счет создания МП на своей мембране, выбрасывая Н+ в наружную среду. Но оказалось, что бактерии используют этот МП не только для синтеза АТФ.

В 1974 г. американский микробиолог Адлер изучал му-тантную линию бактерий кишечной палочки. Эти мутанты «дышали», но не синтезировали АТФ. Под действием кислорода эти бактерии начинали плыть. Этот результат представлялся совершенно удивительным, так как общепринятыми были представления, что для движения, будь то сокращение мышц или движение жгутика, требуется энергия АТФ. Опыты Адлера показали, что энергия окисления пищи может быть преобразована в движение без участия АТФ. Кроме того, Адлер показал, что движение бактерий может быть остановлено, если в среду добавить разобщители. Эти результаты были объяснены В.П. Скулачевым, который предположил, что бактерии используют свой МП прямо для движения жгутика.

Здесь следует сказать, что жгутик бактерий - это совсем особое устройство, отличающееся от жгутика инфузории. У бактерии есть две мембраны: одна наружная прочная оболочка, а вторая - такая же, как у животных клеток. Жгутик состоит из особого белка - флагеллина. Он прикрепляется к особой оси, которая торчит, проткнув наружную жесткую мембрану. На этой си находятся несколько дисков, играющих роль подшипников. Самый внутренний диск погружен во внутреннюю мембрану бактерии. Жгутик инфузории работает, как весло, ударяя по воде. Жгутик бактерии вращается, как корабельный винт. Это было показано так. Было отломано много жгутиков бактерий; флагеллин ввели кроликам, у которых возникла иммунная реакция. У них в крови появились антитела, способные склеивать флагеллин. Антитела прикрепили к стеклу специального сосуда. Бактерии, помещенные в этот сосуд, приклеивались жгутиком к стеклу. В этом п состояла идея опыта.

А все остальное - рецепт приготовления «клея» для ловли бактерии за хвост. Теперь жгутик приклеен к стеклу и можно видеть, что начинает вращаться сама бактерия. Часто говорят, что природа изобрела многое, но не изобрела колесо. Теперь вы видите, что как раз колесо-то и было изобретено еще на заре жизни.

Но если действительно движение бактерии зависит прямо от мембранного потенциала, то бактерии изобрели не только колесо, но и электромотор! Такую идею стоило проверить. В лаборатории В.П. Скулачева на другом виде бактерий - на пурпурной бактерии А.Н. Глаголевым было показано, что скорость движения бактерий действительно зависит, как и предполагал Скулачев, не от содержания АТФ в клетке, а от ее МП. В лаборатории был поставлен такой эффектный опыт. Бактерии были отравлены ядами, устраняющими потенциал, зависящий от ионов Н+. А затем в среду был добавлен еще один яд - валиномицин, который повышает проницаемость мембраны бактерий для ионов калия. Калий начинал выходить наружу, возникал МП. И дважды отравленные бактерии оживали и начинали плыть!

Интересно, что электромотор бактерий обладает реверсом: если жгутик вращается по часовой стрелке, то бактерия плывет жгутиком вперед, а если против часовой стрелки, то жгутиком назад.

Придумано несколько конкретных моделей, которые объясняют, как электроэнергия преобразуется в механическое вращение жгутика. Показано, что МП, при котором работает мотор, порядка 200 мВ, что мощность мотора примерно 10~17 Вт, что через жгутик входит внутрь бактерии примерно 1000 протонов в секунду. Изменение направления вращения жгутика пытаются объяснить поворотом угла «лопастей турбины». Однако подлинный механизм работы этого мотора пока не выяснен.

Мы видели, что МП может быть использован клетками в самых разных целях: в митохондриях, хлоропластах, бактериях - для синтеза АТФ; бактериями - для вращения жгутиков; в самых разных клетках - для транспорта веществ, например, у животных - для транспорта Сахаров, в митохондриях для поглощения Са++, у бактерий для поглощения К+ и т.д.; при «коротком замыкании» для выработки тепла. Все эти факты привели Скулачева в 1975 г. к следующему обобщению: в энергетике клеток есть два универсальных носителя, а не один, как думали раньше, - это АТФ и МП. А тем самым ясно, что МП необходим каждой клетке, а не только нервному волокну.

Как правило, клетки используют в качестве источника энергии МП, создаваемый выкачиванием ионов водорода. Однако мы уже видели, что это не принципиально. Отравленная бактерия начинала плыть и в том случае, когда МП создавался К+. В связи с этим у Скулачева возникла идея, что любой МП - это клеточный резерв энергии, который она в случае надобности может использовать, В очень яркой форме выражается запас энергии у бактерий - обитателей соленой воды, которые накачивают внутрь много К+. На свету они за счет бактериородопсина вырабатывают АТФ и поддерживают МП. Но если их поместить в темноту и в среду без кислорода, то они быстро переставали двигаться в среде, содержащей много KCl, - нет источников энергии. Но если их помещали в раствор с NaCl, то за счет возникающего МП их движение поддерживалось в течение 9 часов. Таким образом, уже бактерии имеют аккумулятор электроэнергии, который они заряжают либо от солнечных батарей, либо от «тепловых электростанций».

Но и это еще не все. Существует особая замечательная группа бактерий - цианобактерии. Это древнейшие обитатели Земли, обладающие рядом особенностей. Они способны к фотосинтезу, могут сами усваивать атмосферный азот и т.д. Среди цианобактерии есть многоклеточные существа, похожие на дождевого червя, у которого каждый членик - отдельная клетка. Эти клетки имеют немного разные функции и соединены межклеточными отверстиями. Сходство с червем усиливается тем, что такие бактерии умеют ползать. Они обладают положительным фототаксисом, т.е. ползут к свету. Сопротивление мембраны у них, так же как у большинства других бактерий и у митохондрий, очень велико, а длина - всего несколько миллиметров.

Работами В.П. Скулачева, Л.М. Чайлахяна и их сотрудников было показано, что цианобактерии умеют передавать электроэнергию на расстояние. Это было показано так. Было показано, что и эти бактерии могут ползти без АТФ за счет энергии МП. Затем бактерии были помещены в такие условия, что источником потенциала был только свет. В темноте бактерии не ползли, а при освещении нескольких клеток на одном конце двигатели начинали работать вдоль всей длины бактерии. При этом была зарегистрирована разность потенциалов во внеклеточной среде между «головой» и «хвостом» бактерии. Читатель может сказать, что мы уже говорили о передаче электрической энергии в нервном волокне. Конечно, передача нервного импульса связана с энергетическими процессами. Но смысл импульса - это передача информации. Через химический синапс к нейрону энергия не передается, передается сигнал, который включает собственные источники энергии клетки-получателя. Совсем другое дело - цианобактерии. У них передается от освещенного места к электромоторам других клеток именно электроэнергия, так же, как она передав ^я от электростанции по проводам к моторам электричек или пылесосов. Так что бактерии умеют вырабатывать, передавать и запасать электроэнергию.

Квартирант превращается в электростанцию

В этом параграфе не случайно оказались под одной крышей митохондрии, хлоропласты и бактерии. Многие из биологов считают, что все они - близкие родственники, что когда-то на заре жизни, когда на Земле только-только появилось достаточное количество кислорода, бактерии, умеющие его использовать, вступили в симбиоз с амебоподобными клетками и поселились внутри них. Эти бактерии вырабатывали АТФ и снабжали им клетку-хозяина, которая заботилась о доставке пищи и защите своих квартирантов. Согласно этой гипотезе точно так же из фотосинтезирующих бактерий возникли хлоропласты.

Эта гипотеза насчитывает около 100 лет существования. Опа забывалась, возрождалась, осмеивалась и возрождалась вновь. В 20-х годах пользовалась поддержкой ряда русских ботаников, возможно, потому, что прежде всего на ботаников произвело особенно сильное впечатление открытие, что лишайники - это симбиоз гриба и водоросли. Новую жизнь этой гипотезе дала современная, в частности молекулярная, биология.

Оказалось, что, например, у митохондрий, как и у бактерий, имеются две мембраны. Наружная имеет довольно крупные поры. Но у бактерий эта наружная стенка прочная, так как она должна защищать клетку от возможности осмотического разрушения, а у митохондрии она потеряла механическую прочность, так как клетка-хозяин заботится о поддержании постоянных осмотических условий. Митохондрии имеют внутри себя ДНК, которая, как и у бактерий, имеет кольцевую форму. Есть внутри митохондрий и свои фабрики белка - рибосомы. Оказалось, что эти рибосомы похожи на бактериальные, а не на рибосомы клеток-хозяев. Например, антибиотики стрептомицин и тетрациклин останавливают работу рибосом бактерий и митохондрий, но не влияют на рибосомы хозяина, а вот циклогексимид - наоборот. Митохондрии способны к размножению внутри клетки. Можно привести и другие аргументы в пользу этой гипотезы, но это увело бы нас в сторону от нашей основной темы.

Практически все животные, растения и грибы, которые дышат, имеют очень сходные митохондрии. А исключение только подтверждает правило. Например, существуют амебы, не содержащие митохондрий, 8 ато в них живут бактерии-симбионты, выполняющие те же функции. Согласно крайней точке зрения, клетки высших организмов - весьма сборные образования: электростанции для дыхания и фотосинтеза они получили от бактерий, а органы движения - от симбиотических спирохет,

Электричество и условные рефлексы

Все со школы знают о замечательных работах И.П. Павлова по выработке рефлексов у животных. Если собаке подают звуковой сигнал, а потом дают пищу и повторяют это сочетание несколько раз, то у нее начинает выделяться слюна в ответ на звуковой сигнал, хотя до выработки условного рефлекса звук такой реакции не вызывал. Естественно было поставить вопрос; что произошло внутри мозга при выработке условного рефлекса? Каким образом сигнал стал попадать от слуховых рецепторов к слюнной железе, к которой он сначала не проходил? К сожалению, вместо ответа биологи могли предложить в основном образные выражения, говоря, что в мозгу «проторяются новые пути» или «замыкаются новые связи». Лишь в последние годы появились экспериментальные факты, приближающие нас к ответу на эти вопросы.

Изучение механизмов условных рефлексов ведется на самых разных животных, в том числе и на таких, у которых немного нейронов. Мы расскажем про результаты, полученные на морском брюхоногом моллюске Хермиссенде. Эти моллюски днем двигаются в сторону света, как говорят, обладают положительным фототаксисом, т.е. попросту всплывают в верхние слои воды, где собирается их пища. Но при сильном волнении моря моллюск уходит от света, т.е. опускается на дно. В лаборатории у моллюска вырабатывали условный рефлекс: сначала давали свет, а потом трясли моллюска или вращали на специальной центрифуге. После некоторого числа сочетаний моллюск полз к свету гораздо медленнее, чем до обучения, или переставал ползти к свету. Этот условный рефлекс обладал всеми признаками рефлекса, вырабатываемого у собак и других животных: он не вырабатывался, если свет и вращение подавали в случайном порядке; затухал через несколько недель; если начинали подавать только свет без вращения, то затухал быстрее и т.д.

В выработке этого рефлекса принимают участие фоторецепторы, которых у моллюска всего 5 в одном глазке, вестибулярные рецепторы, реагирующие на вращение, мотонейроны, управляющие движением животного и несколько промежуточных нейронов, связывающих эти клетки между собой. Была выяснена схема связей этих клеток и предпринята попытка установить, в каком месте этой схемы возникают изменения при обучении моллюска, какие нейроны или какие синапсы меняются, иными словами, в чем же заключается «проторение путей».

Сначала посмотрим, как реализуется положительный фототаксис. Две фоторецепторные клетки типа А возбуждают интернейрон, он возбуждает МН, который, в свою очередь, возбуждает мышцы, обеспечивающие движение. Что же происходит в результате обучения? Результат длительных исследований оказался совершенно неожиданным. У моллюска выработка условного рефлекса оказалась связанной с изменением свойств фоторецепторных клеток, а не интернейронов или синапсов, как предполагали исследователи.

Кроме двух фоторецепторных клеток типа А у моллюска есть еще 3 фоторецептора типа В; эти разные группы фоторецепторов тормозят друг друга. До обучения клетки А сильнее тормозят клетки В и поэтому могут вызвать положительный фототаксис. После обучения клетки В начинают реагировать на свет сильнее, теперь уже они «побеждают» и затормаживают клетки А, снижая скорость движения к свету. Значит, в клетках Вх на которые действовали и светг и сигнал от вестибулярного аппарата, что-то произошло. Оказалось, что в клетках В произошло снижение порога. Дальше выяснялось, какой фактор способствует снижению порога: действие химического вещества, выделяемого вестибулярными нейронами, или создаваемая этим веществом деполяризация. Для этого попытались выработать условный рефлекс, сочетая свет и деполяризацию фоторецептора типа В через микроэлектрод. Оказалось, что рефлекс вырабатывается. Это значит, что под действием света и деполяризации как-то меняются свойства мембраны фоторецепторов типа В, так что их порог снижается.

Что же происходит с мембраной? Оказалось, что у фоторецепторов типа В после обучения не только снижались пороги, но и появлялось еще одно свойство: после выключения света деполяризация сохранялась в течение нескольких минут. Это наводило на мысль, что у таких клеток калий слабо выходит из клеток и поэтому потенциал не возвращается сразу к нормальному уровню. Может быть, у таких клеток стаповится меньше К-каналов, а может быть, они начинают хуже работать. Во время дальнейшей работы были выяснены биохимические механизмы, которые приводят к изменению свойств К-каналов.

Итак, оказалось, что по крайней мере у улиток условный рефлекс вырабатывается в результате изменения электрических свойств мембран фоторецепторных клеток в результате снижения эффективности работы их калиевых каналов. На другом виде улиток было показано, что и другой рефлекс - втягивание дыхательного сифона при раздражении тела улитки - связан с таким же механизмом.

Однако не следует думать, что выработка любого условного рефлекса связана с изменением электрических свойств клеточных мембран. Сейчас изучены случаи, когда выработка рефлекса обусловлена другим механизмом - изменением эффективности работы синапса, т.е. действительно «проторением пути».

Никто необъятного объять не может

Мы рассказали вам о многих функциях электричества в живых организмах. Но не думайте, что обо всех. Например, мы не смогли рассказать вам об электрических процессах в растениях). А ведь в растениях тоже распространяются потенциалы действия, под влиянием которых опускает свои листочки в ответ на прикосновение стыдливая мимоза или захлопывает свою ловушку насекомоядная мухоловка.

Очень хотелось бы рассказать о биологических часах. Ведь очень многие растения и животные «знают» время суток. Мы носим свои часы на руке или в кармане, а вот многие ракообразные и моллюски прячут свои часы в гораздо более надежном месте: внутри собственного глаза. Сейчас показано, что эти часы - электрические. С помощью искусственного электрического импульса эти часы можно «перевести», переставив их стрелки со «дня» на «вечер». А если изменить ионный состав среды, окружающей клетки, которые образуют часы, то можно, например, заставить часы отставать. Внимательный читатель не удивится, узнав, что часы образованы группой клеток, связанных электрическими синапсами, - ведь и тут для точного хода часов необходимо бороться с шумами.

Интересно было бы рассказать и о перестройке структуры кости при изменении нагрузки. Оказывается, под действием нагрузки в кости возникают электрические поля и в зависимости от направления их силовых линий клетки, создающие кость, перестраивают внутренние костные балки так, чтобы они лучше сопротивлялись действию нагрузки).

Но где-то необходимо остановиться. Давайте же кончим нашу историю на том, с чего мы ее начали. Электрофизиология как наука началась с изучения тока повреждения нервов. Можно было бы думать, что ток повреждения давно сыграл свою роль и ушел в историю. Но… ведь нервы порой действительно повреждаются! Что же с ними тогда происходит?

Мы знаем, что ток повреждения быстро убывает, это объясняется тем, что на месте повреждения нерва формируется новая мембрана. Однако оказалось, что в дальнейшем этот ток уже не убывает и в регенерирующем нерве неделями сохраняет свою величину. В 1947 г. американский биолог Доренто де Но высказал гипотезу, что этот ток играет какую-то роль в процессе роста и регенерации, например, переносит в кончик растущего нерва какие-то важные внутриклеточные частицы. Но если ток повреждения ускоряет заживление нерва, то, может быть, можно дополнительно ускорить этот процесс, пропуская через ткань слабый постоянный ток в нужном направлении? И вот начались опыты по ускорению отращивания ног у таракана, а потом - и по ускорению заживления ран у млекопитающих. Появился ряд обнадеживающих результатов. Но если ток влияет на рост, то нельзя ли с помощью него ускорить развитие эмбрионов животных?

Но тут мы вынуждены повторить слова Кристофера Робина: «Экспедиция закончена».

Дальше, дальше, дальше!

Книги выходят медленно. С тех пор, как мы написали «Экспедиция окончена», прошел год и в биологии появилось множество интересных новинок, о которых хочется рассказать. Стоит, вероятно, отметить, что большинство из них появилось в электробиологии там, где она соприкасается с молекулярной биологией. Трудно выбрать из этих новинок самую интересную. Можно было бы рассказать о том, почему корень растения растет вниз; оказывается, это тоже связано с электробиологией. Можно было бы рассказать о работе обонятельных рецепторов: оказалось, что пахучие вещества запускают в них такие же цепочки химических реакций, как свет в фоторецепторах. Но мы решили рассказать о работах из области иммунологии, которая на первый взгляд уж никак не связана с электробиологией.

Еще в 1882 г. И.И. Мечников открыл явление фагоцитоза и разработал клеточную теорию иммунитета. За прошедшее столетие иммунология превратилась в отдельную биологическую дисциплину, в одну из «точек роста» современной биологии. Иммунологи показали, что лимфоциты умеют уничтожать и чужие клетки, попавшие в организм, и некоторые собственные клетки, изменившие свои свойства, например раковые клетки или клетки, пораженные вирусами. Но еще совсем недавно не было известно, как именно лимфоциты это делают. В последнее время это выяснилось.

Уже довольно давно было известно, что для уничтожения своей жертвы лимфоцит должен вступить с ней в непосредственный контакт. Если ввести в это время в клетку-жертву микроэлектрод и регистрировать ее МП, то можно обнаружить, что через короткое время после нападения лимфоцита МП жертвы резко убывает. Оказывается, лимфоцит проделывает в мембране своей жертвы отверстия, устраивая, так сказать, короткое замыкание. Через эти отверстия из клетки выходит калий, а внутрь нее входят ионы натрия и кальция. Напрасно тратят энергию ионные насосы жертвы - МП не повышается и пораженная клетка через несколько минут погибает.

Но каким способом лимфоцит делает отверстия в мембране атакованной им клетки? Ведь отверстие, сделанное, например, микроэлектродом, вовсе не приводит к гибели клетки: после вынимания микроэлектрода «рана» в мембране быстро затягивается. Оказалось, что лимфоцит при контакте с жертвой выбрасывает из особых пузырьков молекулы специального белка. Эти молекулы встраиваются в мембрану жертвы и из нескольких таких молекул-субъединиц возникает трубка, продырявливающая мембрану. Белок, образующий такую трубку, назвали перфоршюм. Возникающий в мембране перфориновый канал похож на канал, создаваемый коннектином. Но коннексоны обладают «крышками» и открываются только при «стыковке» двух клеток, связывая их между собой, а порфириновые каналы никаких крышек не имеют и постоянно находятся в открытом состоянии. Клетка-мишень не может просто затянуть мембраной дырки, образованные трубками перфорина, а на более радикальные меры у нее нет времени.

Но почему во время нападения не погибает сам лимфоцит? Казалось бы, перфорин, выброшенный в щель между двумя клетками, должен встроиться не только в мембрану жертвы, но в собственную мембрану лимфоцита со всеми вытекающими из этого последствиями. Действительно, молекулы перфорина встраиваются в мембрану лимфоцита, но не убивают его. Дело в том, что у лимфоцита в мембране имеется «противоядие» - белок, который связывает отдельные субъединицы перфорина и не дает им образовать канал.

Можно было бы думать, что такая сложная система нападения и самозащиты существует только у специализированных клеток многоклеточного организма - лимфоцитов. Однако оказалось, что это не так. Тот же способ нападения на чужие клетки выработали некоторые бактерии, простейшие и грибы. Например, этот способ используют во время охоты некоторые амебы. Правда, амебы или грибы вырабатывают белки, отличающиеся от перфорина, но точно с таким же механизмом действия.

На этот раз наше путешествие в мир электробиологии завершается окончательно. Но пока эта книга попадет к вам в руки, будут сделаны новые открытия и обнаружены новые загадки. Экспедиция продолжается!

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать