рДНК-биотехнология. Способы биотрансформации клеток
p align="left">Помимо создания клеток-продуцентов, трансформация соматических клеток млекопитающих позволяет изучать тонкие механизмы регуляции экспрессии генов и целенаправленно модифицировать генетический аппарат клетки животных, а при необходимости и человека, что имеет огромное значение для медицинской генетики.

Культуры клеток млекопитающих могут оказаться эффективным источником выделения некоторых вирусных антигенов с целью получения вакцин для животных и человека. Получение таких вакцинных культур клеток осуществимо при помощи техники рекомбинантных ДНК и эффективных векторов экспрессии для клеток млекопитающих и человека. При использовании ДНК-вакцин в организм вводится не антиген, а ген, кодирующий синтез этого антигена. Ген встраивается в плазмиду, а плазмида вводится организм путем обыкновенной инъекции.

ДНК-вакцины имеют хорошие перспективы в животноводстве. Фибер - белок вирусной оболочки. Эпитоп фибера кодирует синтез протективных антител. Одно из заболеваний птиц - синдром снижения яйценоскости (ССЯ) вызывается вирусом. После анализа ДНК этого вируса был выделен ген, кодирующий фибер, проклонирован и встроен в плазмиду. Рекомбинантная вакцина при введении ее в организм принесет ДНК фибера в клетку, выработка вирусного белка спровоцирует синтез специфических антител, т. е. вызовет иммунный ответ.

Достоинством таких вакцин является очень маленький объем - для иммунизации одной мыши достаточно 10-50 мкг плазмиды, одной коровы - 200-300 мкг. Плазмида сохраняется в организме до 1 года. В стадии клинических испытаний в настоящее время находятся ДНК-вакцины против микоплазм, возбудителя туберкулеза, сальмонеллеза, лейшманиоза.

Развитие злокачественной опухоли в организме обычно подавляет иммунитет. Проблема в том, чтобы подхлестнуть иммунную систему в целом и направить ее действие против раковых клеток. Исследователи из Медицинской школы в Энн-Арборе (Мичиган) придумали метод борьбы с раком. В опухолевые клетки толстой кишки подопытных мышей ввели гены, кодирующие белки другой линии мышей. Это можно осуществить с помощью липосом или вируса. После появления на внешней стороне клеточной мембраны этих белков иммунная система атаковала такие клетки. 20% больных мышей выздоровели, у 70% опухоль уменьшилась, в контрольной группе все умерли. Лимфоциты боролись не только с «меченными» клетками опухоли, но и клетками метастаз, следовательно, иммунная система «проснулась». В настоящее время ведутся эксперименты на людях с раком кожи.

2.6 Генотерапия

Лечение заболеваний с помощью генов получило название генотерапии. Сейчас в мире насчитывается порядка 400 проектов, посвященных лечению с помощью генотеропии.

Разработке программы генной терапии предшествуют тщательный анализ тканеспецифической экспрессии соответствующего гена, идентификация первичного биохимического дефекта, исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Апробацию процедуры генокоррекции наследственного заболевания проводят на первичных культурах клеток больного, в которых в норме функционально активен данный ген. На этих клеточных моделях оценивают эффективность выбранной системы переноса экзогенной ДНК, определяют экспрессию вводимой генетической конструкции, анализируют ее взаимодействие с геномом клетки, отрабатывают способы коррекции на биохимическом уровне. Используя культуры клеток, можно разработать систему адресной доставки рекомбинантных ДНК, однако проверка надежности работы этой системы может быть осуществлена только на уровне целого организма. Поэтому такое внимание в программах по генной терапии уделяется экспериментам in vivo на естественных или искусственно полученных моделях соответствующих наследственных болезней у животных.

Успешная коррекция генетических дефектов у таких животных и отсутствие нежелательных побочных эффектов генной терапии являются важнейшей предпосылкой для разрешения клинических испытаний. Таким образом, стандартная схема генокоррекции наследственного дефекта включает серию последовательных этапов. Она начинается созданием полноценно работающей (экспрессирующейся) генетической конструкции, содержащей смысловую (кодирующую белок) и регуляторную части гена. На следующем этапе решается проблема вектора, обеспечивающего эффективную, а по возможности и адресную доставку гена в клетки-мишени. Затем проводится трансфекция (перенос полученной конструкции) в клетки-мишени, оценивается эффективность трансфекции, степень коррегируемости первичного биохимического дефекта в условиях клеточных культур (in vitro) и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний.

Существует два типа генотерапии: заместительная и корректирующая.

Заместительная генотерапия заключается во вводе в клетку неповрежденного гена. Внесенная копия заменит по функциям сохранившийся в геноме больного дефектный ген. Все проводимые сегодня клинические испытания используют внесение в клетку дополнительных количеств ДНК.

При корректирующей терапии предполагается замена дефектного гена нормальным в результате рекомбинации. Пока этот метод на стадии лабораторных испытаний, так как эффективность его еще очень низка.

В зависимости от способа введения экзогенных ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo). Клеточная генная терапия или терапия ex vivo предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансфецированных клеток и реинфузию их тому же пациенту.

Примером может служить лечение комбинированного иммунодефииицита. Комбинированный иммунодефицит может быть результатом дефекта гена аденозиндезаминазы. Впервые попытка лечения такого больного методами генотерапии была предпринята в США в 1990 г. У больного ребенка извлекли Т-лимфоциты, трансформировали ретровирусным вектором, введя нормальный ген аденозиндезаминазы и вернули клетки в организм. Введение приходится повторять. Более эффективна аналогичная трансформация стволовых клеток костного мозга.

Генная терапия in vivo основана на прямом введении клонированных и определенным образом упакованных последовательностей ДНК в специфические ткани больного. В настоящее время не существует общедоступного метода культивирования клеток легких, поэтому при легочных заболеваниях единственный способ доставить чужеродный ген - это ввести его прямо в организм. Муковисцидоз - весьма распространенное среди людей белой расы тяжелое наследственное заболевание легких, которое поражает, например, в семьях из Центральной Европы одного новорожденного из 2500 и для которого установлен дефектный ген, кодирующий белок-регулятор трансмембранной проводимости. Основное проявление дефектного гена - пневмония. Поражаются все эпителиальные клетки. Основная проблема - как доставить ген в клетки, покрытые слизью, которая препятствует трансформации. Неповрежденную копию "гена заболевания", включенную в аденовирусный вектор или липосому, вводят в форме аэрозоля в дыхательные пути больного.

Для коррекции нарушения при прогрессирующей мышечной дистрофии Дюшенна (заболевании мальчиков, связанном с дефектами Х-хромосомы) нормальный ген, кодирующий белок дистрофии, пытались прямо вкалывать в мышечные волокна, используя либо "голую" ДНК, либо аденовирусный вектор. Другие исследователи трансплантировали больному миобласты после генетической коррекции. Ранее неподвижный ребенок приобретал способность двигаться! К сожалению, во всех этих опытах удается получить только временный терапевтический эффект, и процедура введения гена должна неоднократно повторяться.

Список наследственных заболеваний, которые пытаются или планируют лечить генами, велик. Это и ревматоидный артрит, и фенилкетонурия, и заболевания, связанные с недостатком гормонов (инсулина, эритропоэтина, гормона роста). В случае хронической анемии, связанной с дефицитом эритропоэтина, на основании опытов на животных предлагается принципиально новый подход к лечению. Так как каждая из наших клеток содержит один и тот же геном, можно заставить фибробласты кожи, которые в норме не производят эритропоэтина, синтезировать этот гормон. Для этого нужно ввести в геном новую контролирующую область и тем самым снять запрет со считывания (экспрессии) гена эритропоэтина, присутствующего, но "молчащего" в фибробластах.

Практически в любой области медицины либо начаты клинические испытания лечения наследственных заболеваний с помощью генотерапии, либо в опытах на животных разрабатываются подходы к такому лечению. По мере усовершенствования методов доставки генов и контроля их экспрессии список заболеваний, к которым можно применять генотерапию, будет безусловно расширяться.

Генотерапия применима не только к наследственным заболеваниям. Предстоит решить проблему лечения генами "чумы XX века" -- синдрома приобретенного иммунодефицита (СПИД), возникающего при заражении вирусом иммунодефицита человека (ВИЧ). ВИЧ представляет собой ретровирус, поражающий Т-лимфоциты и макрофаги. Болезнь удалось бы победить, если бы были найдены новые гены, введение которых в зараженные ВИЧ лимфоциты останавливало бы дальнейшее размножение вируса. Предложено множество хитроумных способов борьбы со СПИДом с помощью привнесенных генов. Все они основаны на новейших данных о строении и функционировании генома ретровируса. Например, вводя прямо в мышцы больного ретровирусные векторы, несущие отдельные гены ВИЧ, ученые рассчитывали на то, что гены ВИЧ после внедрения в ДНК хромосом хозяина смогут дать информацию для синтеза вирусных белков и произойдет "противоСПИДная" иммунизация больного этими белками. Однако еще не получено ощутимых результатов, которые сулили бы успех в борьбе с вирусом дикого типа, коварство которого заключается в его изменчивости.

Огромные перспективы открывает использование генотерапии для лечения онкологических заболеваний. Многолетние усилия ученых привели к пониманию того, что рак -- это генетическое заболевание и его развитие происходит многостадийно, в результате серии генетических нарушений, накапливающихся в клетке. Следовательно, каждый из таких отдельных генетических эффектов может стать точкой приложения генотерапевтического подхода.

2.7 Получение трансгенных животных

Если вводить ДНК в клетки многоклеточного организма, то результатом трансформации будет изменение свойств лишь небольшого числа клеток, которые приобрели новый ген или гены. Следовательно, для изменения свойств всего организма следует изменять геном половых клеток, которые перенесут новые свойства потомкам. У растений и животных целесообразно изменять такие свойства, как скорость роста, устойчивость к заболеваниям, способность адаптироваться к новым внешним условиям. В качестве маркеров в этом случае можно использовать полиморфизм длины рестрикционных фрагментов (AFLP), анализ мини-сателлитов, анализ микросателлитной ДНК (SSR), гибридизацию и т.д.

Разработаны способы введения генов в эмбриональные клетки млекопитающих, мух и некоторых растений. От работы с довольно крупными яйцами амфибий перешли к изучению яйцеклеток и эмбрионов мыши, которая представляет наиболее изученное в генетическом отношении млекопитающее.

Микроинъекцию клонированных генов производят в один или оба пронуклеуса только что оплодотворенной яйцеклетки мыши. Чаще выбирают мужской пронуклеус, привнесенный сперматозоидом, так как его размеры больше. После инъекции яйцеклетку немедленно имплантируют в яйцевод приемной матери, или дают возможность развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку.

Можно вводить ген в сперматозоиды и затем проводить ими оплодотворение. Таким образом были инъецированы гены интерферона и инсулина человека, ген в-глобина кролика, ген тимидинкиназы вируса простого герпеса и кДНК вируса лейкемии мышей. Число молекул, вводимое за одну инъекцию, колеблется от 100 до 300 000, а их размер - от 5 до 50 кб. Выживает обычно 10 - 30% яйцеклеток, а доля мышей, родившихся из трансформированных яйцеклеток варьирует от нескольких до 40%. Таким образом, реальная эффективность составляет около 10%.

Интеграция чужеродных генов неспецифична по отношению к хромосомам, а число копий чужеродного гена может различаться от нескольких штук до 100 и более. Эти гены образуют группу тандемных повторов, объединенных по типу "голова к хвосту". Чужеродная ДНК после инъекции была обнаружена как в соматических, так и в половых клетках. Это означает, что интеграция проходит на самых ранних стадиях развития зиготы.

В нескольких случаях гетерологичная ДНК наследовалась в трех поколениях мышей, что свидетельствует о стабильной интеграции. Интегрировавшая в половые клетки ДНК передается как менделевский ген. Установлено, что уровень экспрессии чужеродного гена зависит от места интеграции ДНК с хромосомами и от степени ее метилирования, а также от дифференцировки тканей. В некоторых случаях удалось получить тканеспецифическую экспрессию. Важно отметить что специфические чужеродные гены можно встраивать в геном клетки таким образом, что они подчиняются нормальным регуляторным сигналам.

В 1981 году Константини и Лэси (Оксфорд) провели инъекцию в яйцеклетки мыши фрагменты хромосомной ДНК кролика длиной 19 килобаз. Эти фрагменты содержали ген в-глобина кролика. Яйцеклетки культивировали до стадии бластоцисты и имплантировали в матку. У 24 мышей, родившихся в результате развития имплантированных яйцеклеток, проведены частичная гепатоэктомия. Анализ ДНК из клеток печени показал, что у 9 мышей встречается от 1 до 20 копий на клетку гена в-глобина. После спаривания 4 трансформированных самцов с нормальными самками получили потомство из 18 животных. 6 из них также имели ген в-глобина. Установлено, что интеграция гена в клетки млекопитающих происходит случайным образом и не связана с конкретными областями хромосомы. Ген нестабилен, может быть утрачен или стать неактивным. Вместе с геном необходимо вводить регуляторные последовательности.

Метод введения генов в эмбриональные клетки имеет ограничения. Не всегда удается встроить чужеродную ДНК в заданный участок хромосомы. Разработанные методические примы пока не позволяют заменить имеющийся в геноме ген, вытесняя его, не всегда удается подчинить новый ген системе регуляции организма.

При трансгенозе могут возникать неожиданные проблемы. Например, одни из первых работ по генетической транформации животных проводились путем встраивания генов гормона роста. Перенос гена гормона роста крысы мышам увеличивал рост мышей в 2 раза. Эксперименты по трансгенозу генов гормона роста быка кроликам также увенчались успехом. А вот аналогичные эксперименты по модификации крупного рогатого скота привели к увеличению прироста всего на 10-20%. Очевидно, это связанно с тем, что у мышей сохраняется широкая норма реакции, и встраивание генов, увеличивающих количество гормона, заставляет генотип реализоваться максимально полно. У домашнего скота в результате направленной селекции организмы работают на верхнем пределе нормы реакции, отсюда ожидаемый эффект не проявился.

В нашей стране получены свиньи, несущие ген соматотропина. Они не отличались по темпам роста от нормальных животных, но изменение обмена веществ сказалось на содержании жира. У таких животных ингибировались процессы липогенеза и активировался синтез белка. К изменению обмена веществ приводило и встраивание генов инсулиноподобного фактора. Такие трансгенные свиньи были созданы для изучения цепочки биохимических превращений гормона, а побочным эффектом явилось укрепление иммунной системы.

Самая мощная белоксинтезирующая система находится в клетках молочной железы. Если поставить гены чужих белков под контроль казеинового промотора, то экспрессия этих генов будет мощной и стабильной, а белок будет накапливаться в молоке (животное-ферментер). Уже получены трансгенные коровы, в молоке которых содержится человеческий белок лактоферрин. Этот белок планируют применять для профилактики гастроэнтерологических заболеваний у людей с низкой иммунорезистентностью. Это больные СПИДом, недоношенные младенцы, больные раком, прошедшие радиотерапию. Ведутся клинические испытания такого молока. Уже сейчас корпорация Genzyme Transgenics планирует исследования с целью создания трансгенного крупного рогатого скота, содержащего в молоке человеческий альбумин. Был куплен патент на получение эмбрионов, содержащих геном клеток соединительной ткани (фибробластов), включающий ген, ответственный за синтез человеческого белка. Подобная технология позволяет увеличить эффективность создания трансгенных молочных животных, так как при обычном впрыскивании генов в оплодотворенную яйцеклетку рождается от только 5 - 10% трансформированных животных, из них - несколько самцов, не дающих молока.

Использование новой технологии клонирования позволяет получать животных только женского пола, дающих трансгенный протеин. Альбумин используется в терапии для поддержания осмотического давления в крови. Ежегодно в мире требуется около 440 тысяч литров плазмы крови для выделения этого белка (стоимость около 1,5 млрд. $). Каждая молочная корова может произвести 80 кг рекомбинантного человеческого альбумина ежегодно. Genzyme Transgenics занимается разработкой аналогичных методов получения человеческого гормона роста и в-интерферона.

В Англии созданы трансгенные овцы, молоко которых содержит фактор свертывания крови.

В нашей стране были попытки создать овец, продуцирующих химозин (фермент для сыроварения). Было получено 2 овцы, у одной - ген не экспрессировался, у второй содержание химозина достигало 300 мг/л. Однако потомство этой овцы давало низкие удои - порядка 50 кг за период лактации. Причина заключалась в том, что химозин вырабатывается в виде предшественника - прохимозина, который превращается в активный фермент при рН=5. Было запланировано получать именно прохимозин, но в каких-то участках вымени происходило снижение рН, что приводило к активации химозина непосредственно в организме. Активный химозин свертывал молоко, а оно закупоривало протоки вымени. Сейчас пытаются решить эту проблему.

В Подмосковье получены кролики, выделяющие г-интерферон, эритропоэтин, но кролики не являются традиционными продуцентами молока. Эксперименты же по трансформации сельскохозяйственных животных очень дорогостоящи - одно трансгенное животное стоит десятки и сотни тысяч долларов.

Трансгенных животных получают и для целей ксенотрансплантации. Одним из излюбленных доноров органов являются свиньи, так как имеется анатомическое сходство органов и сходство иммунологических свойств. Реакции отторжения при трансплантации имеют сложный механизм. Одним из сигналов для атаки организма на чужой орган являются белки, локализованные на внешней поверхности мембраны. У трансгенных свиней эти белки заменены на человеческие.

Еще одно направление трансгеноза - получение устойчивых к болезням животных. Животноводство держится на вакцинах, так как селекция ведется преимущественно на хозяйственно ценные признаки - шерстистость, молочность и т. д. Повышение устойчивости - дело генных инженеров. К защитным белкам относятся интерфероны, поэтому ген интерферона встраивали различным животным. Трансгенные мыши получили устойчивость, они не болели или болели мало, а вот у свиней такого эффекта не обнаружено.

Другое направление - введение генов, кодирующих антисмысловую РНК. Для животноводства острой проблемой являются лейкозы, вызываемые РНК-вирусами. Трансгенные кролики, несущие гены, отвечающие за присутствие в клетке антисмысловой РНК, были устойчивы к лейкозам.

Трансгенных животных можно использовать для изучения наследственных заболеваний мозга и нервной системы. Гены болезни Альцгеймера (отложение белка в-амилоида приводит к образованию характерных бляшек) и гены, отвечающие за развитие эпилепсии, болезней мозга вводятся в геном нормальных животных; при этом получают трансгенных животных-моделей, на которых можно испытывать различные терапевтические приемы.

Трансгенных животных стали использовать для исследования воспалительных и иммунологических заболеваний человека, например, ревматоидного артрита. Моделируются болезни, связанные с липидным обменом.

Заключение

Хотя генетика и генная инженерия уже играют огромную роль в медицине и сельском хозяйстве, основные результаты ещё впереди. Нам ещё очень многое предстоит узнать о том, как работает сложная генетическая система в нашем организме и у других видов живых существ.

Необходимо определить функции и назначение каждого гена, определить, каковы условия его активации, в какие периоды жизни, в каких частях тела и при каких обстоятельствах он включается и приводит к синтезу соответствующего белка. Далее, необходимо понять, какую роль играет в организме этот белок, выходит ли он за пределы клетки, какие сообщения несёт, какие реакции катализирует, как влияет на запуск биологических процессов в других частях организма, какие гены активирует. Отдельной сложной задачей является решение проблемы сворачивания белков - как, зная последовательность аминокислот, составляющих белок, определить его пространственную структуру и функции. Эта проблема требует новых теоретических знаний и более мощных суперкомпьютеров.

Но учёные не пасуют перед масштабом этой задачи. Расшифровка генома человека потребовала более десяти лет, решение проблемы сворачивания белков может занять чуть дольше, но когда она будет решена, человек сможет полностью контролировать жизненные процессы в любых организмах на всех уровнях.

Список литературы

1. Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. Т. 1 - 3. М.: Мир, 1994.

2. Анализ генома. Методы / Под ред. К. Дейвиса. М.: Мир, 1990. 246 с.

3. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. - 241 с.

4. Барановов В.С. Генная терапия - медицина XXI века // Соросовский образовательный журнал. № 3. 1999. С. 3 - 68.

5. Бекер М.Е., Лиепиньш Г.К., Райпулис Е.П. Биотехнология. М.: Агропромиздат, 1990. 334 с.

6. Борисюк Н.В. Молекулярно - генетическая конституция соматических гибридов // Биотехнология. Итоги науки и техники ВИНИТИ АН СССР. М., 1988. Т. 9. С. 73 -113.

7. Валиханова Г.Ж. Биотехнология растений. Алматы: Конжык, 1996. 272 с.

8. Глеба Ю.Ю. Биотехнология растений // Соросовский образовательный журнал. № 6. 1998. С. 3 - 8.

9. Глебов О.К. Генетическая трансформация соматических клеток // Методы культивирования клеток. Л.: Наука, 1988.

10. Гольдман И.Л., Разин С.В., Эрнст Л.К., Кадулин С.Г., Гращук М.А. Молекулярно-биологические аспекты проблемы позиционно-независимой экспрессии чужеродных генов в клетках трансгенных животных // Биотехнология. 1994. № 2.

11. Дыбан А.П., Городецкий С.И. Интродукция в геном млекопитающих чужеродных генов: пути и перспективы // Молекулярные и клеточные аспекты биотехнологии. Л.: Наука, 1986. С. 82 - 97.

12. Егоров Н.С., Самуилов В.Д. Современные методы создания промышленных штаммов микроорганизмов // Биотехнология. Кн. 2. М.: Высшая школа, 1988. 208 с.

13. Зверева С.Д., Романов Г.А. Репортерные гены для генетической инженерии растений: хара¬ктеристика и методы тестирования // Физиология растений. 2000. Т. 47, № 3. С. 479-488.

14. Лещинская И.Б. Генетическая инженерия // Соросовский образовательный журнал. 1996. №1. С. 33 - 39.

15. Ли А., Тинланд Б. Интеграция т-ДНК в геном растений: прототип и реальность // Физиология растений. 2000, том 47, № 3. С. 354-359

16. Лутова Л.А., Проворов Н.А., Тиходеев О.Н. и др. Генетика развития растений. СПб.: Наука, 200. 539 с.

17. Льюин Б. Гены. М.: Мир, 1987. 544 с.

18. Пирузян Э.С., Андрианов В.М. Плазмиды агробактерий и генная инженерия растений.М.: Наука, 1985. 280 с.

19. Пирузян Э.С. Генетическая инженерия растений.М.: Знание, 1988. 64 с.

20. Пирузян Э.С. Основы генетической инженерии растений.М.: Наука, 1988. 304 с.

21. Пирузян Э.С. Проблемы экспрессии чужеродных генов в растениях // Итоги науки и техники ВИНИТИ. Сер. Биотехнология. 1990. Т. 23. 176 с.

22. Попов Л.С., Языков А.А. Трансгенные животные как модели для изучения репродукции эмбрионального развития и заболеваний человека // Успехи современной биологии.1999. Т 119, № 1. С. 30-41.

23. Романов Г.А. Генетическая инженерия растении и пути решения проблемы биобезопасности // Физиология растений, 2000. Том 47, № 3. С. 343-353

24. Сельскохозяйственная биотехнология: Учеб. / В.С. Шевелуха, Е.А. Калашникова, С.В. Дегтярев и др.: Под ред. В.С. Шевелухи. М.: Высш. школа, 1998. 416 с.

25. Сингер М., Берг П. Гены и геномы. Т. 1-2. М.: Мир, 1998.

26. Томилин Н.В., Глебов О.К. Генетическая трансформация клеток млекопитающих // Молекулярные и клеточные аспекты биотехнологии. Л.: Наука, 1986. С. 62 - 82.

27. Фаворова О.О. Лечение генами - фантастика или реальность? // Соросовский образовательный журнал. № 2. 1997. С. 21 - 27.

28. Щелкунов С.Н. Генетическая инженерия. Ч. 1. Новосибирск: Изд-во Новосибирского ун-та, 1994. 304 с.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать