Способы получения ферментов
p align="left">Увеличение вместимости корзины центрифуги и непрерывное пропускание через нее центрифугируемой жидкости ограничивает величину безопасной угловой скорости. Эта величина также ограничивается, если твердый осадок подлежит разгрузке непосредственно в ходе операции, поскольку значительное влияние на угловую скорость оказывает степень дебаланса. Исходя из этих ограничений, промышленность создала ряд центрифуг, применимых к переработке продуктов биологической природы. Но только лишь некоторые из них оказались пригодными для выделения ферментов, так как чрезвычайно ограничивающим фактором в этом отношении являются свойства системы жидкость -- «твердая» частица. Для сепарации микробных клеток, остатков животных и микробных клеток и различных типов осадков применяются главным образом три типа центрифуг: трубчатые, многокамерные и дисковые. Меньшее, хотя и очень важное, применение находят спиральные центрифуги, центрифуги с твердой корзиной и ультрацентрифуги.

3.2 Центрифуги с роторами трубчатого типа

Цилиндрический ротор подвешивается при помощи гибкого вала к находящемуся в головке центрифуги мотору или воздушной турбине. Такая конструкция снижает нагревание ротора по сравнению с тем, что имеет место при нижнем расположении привода. Ротор установлен в подшипниках скольжения из мягкого металла. Для этой цели обычно применяется латунь, и хотя теоретически контакт между обрабатываемой жидкостью и подшипниками и данном типе машин не должен иметь места, тем не менее в тех случаях, когда обработке подвергаются растворы сульфата аммония, может происходить явная контаминация их медью. Подшипники скольжения из сплава Вууда являются в этом плане относительно надежной альтернативой при более высокой или более низкой частоте вращения в машинах небольших масштабов. Ослабление таких подшипников дает возможность ротору возвращаться в центрированное положение во время любого временного разбалансирования и обеспечивает более высокую частоту вращения по сравнению со всеми другими типами центрифуг, за исключением зональных ультрацентрифуг. В случае лабораторной модели центрифуги Sharpies IP (Pennwalt) с диаметром ротора 4,5 см и частотой вращения 50 ООО об/мин развивается усилие в 62 500 g, а в случае модели 6Р (диаметр ротора 10,8 см, частота вращения 15 500 об/мин) -- 14 000 g. Модель IP оснащена воздушной турбиной, модель GP приводится в действие с помощью электродвигателя.

Жидкость перекачивается в ротор через донный штуцер, омывая при этом нижние подшипники. По море продвижения жидкости вверх по ротору происходит седиментация находящихся в ней твердых частиц на стенках ротора. Освобожденная от твердых включений жидкость отбрасывается центробежной силой из ротора в его верхней части и собирается в окружающую ротор чашу. Обе модели при обработке суспензий микробных, животных и растительных клеток, большинства суспензий остатков микробных клеток, а также суспензий твердых белковых адсорбентов дают прекрасное их осветление, а также прекрасное обезвоживание полученных твердых осадков. С помощью лабораторной модели можно также отделить от жидкой фазы белковую фракцию, осажденную солями или полимерами. Однако отделение невозможно, если плотность жидкости очень высока.

Применение пластиковых гильз ускоряет удаление осадка по сравнению с тем, как это происходит в случае извлечения из машины самого центрифужного ротора. Время оборачиваемости 15-- 20 мин. Однако количество накапливаемого твердого осадка при этом незначительно -- около 4 кг (по влажной массе).

Вывод жидкости из центрифуги влечет за собой ценообразование и генерирование аэрозоля. Последний может представлять опасность. Поэтому все машины, занятые в производстве ферментов, должны позволять осуществлять их монтаж внутри ограждающего кожуха. Аэрация жидкой фазы при разгрузке центрифуг может повреждать находящиеся в ней ферменты, особенно когда они содержат активные сульфгидрильные радикалы. В этих случаях может оказаться полезным применение противопенных и защитных в отношении сульфгидрильных групп агентов.

Следует иметь в виду, что при входе обрабатываемой суспензии в центрифугу очень высокое угловое ускорение может привести к дезагрегированию имеющихся в ней конгломератов и элементов осадка и, следовательно, к уменьшению вероятности удаления твердых частиц из жидкости. Когда двигатель выключается, жидкость, остающаяся в роторе центрифуги, будет вытекать из нее через донный штуцер и может выносить с собой определенное количество твердых частиц. Поэтому не следует смешивать эту часть жидкости с уже осветленной.

Несмотря на указанные недостатки, такие простые и доступные машины, как описанные центрифуги, являются наиболее пригодными и универсальными для разделения жидкой и твердой фаз при получении ферментов в полупромышленных условиях.

3.3 Многокамерные центрифуги

В машинах центробежного типа размеры ротора ограничиваются механическими усилиями. Альтернативой центрифугам с роторами большой вместимости являются многокамерные центрифуги, у которых серии концентрических камер монтируются внутри и снаружи ротора (рис. 3- б). Сложность такого ротора и его жесткое монтирование на донном подшипнике выше коробки передач и электродвигателя ограничивают возможную частоту его вращения (для ротора диаметром 46 см -- 6500 об/мин).Жидкость вводится в центрифугу через центральную трубку, преодолевает зигзагообразный путь вверх и вниз между концентрически расположенными камерами и удаляется с помощью насоса центростремительного действия, расположенного концентрически относительно трубы, подводящей обрабатываемую жидкость. Твердые частицы собираются на внутренних поверхностях каждой камеры, а не осевшие во внутренних камерах движутся наружу, где подвергаются воздействию еще больших седиментационных сил. Однако для достижения необходимой степени обезвоживания осадок должен почти полностью заполнять весь ротор центрифуги.

В некоторых моделях многокамерных центрифуг, по мере того как ротор замедляет свой ход, жидкость приостанавливает движение по камерам и проходит через отверстие вблизи центральной оси. В других моделях жидкость удаляется посредством сифонирования. Но в обеих из них твердый осадок может быть довольно легко вымыт из ротора центрифуги. Поэтому многокамерные центрифуги хорошо подходят для одноразового применения, когда размер ротора может быть выбран довольно точно и исходя из желательного объема партии получаемого материала. Они менее годятся для случаев, когда загрузка исходной суспензии твердой фазой может существенно изменяться. Разборка многокамерных центрифуг -- операция довольно длительная, поскольку прокладки при разборке сохранить весьма затруднительно, твердый осадок должен соскабливаться со стенок осадительных камер без разборки машины. Квадратное поперечное сечение ротора центрифуги и ее расположение непосредственно над коробкой передач затрудняют отвод тепла от электродвигателя и шестерен коробки передач.

Стандартная многокамерная центрифуга может охлаждаться с помощью холодной воды, подаваемой через распылительную головку, смонтированную над центрифужной корзиной. Однако такой способ охлаждения не обеспечивает отвода тепла от центростремительного разгрузочного насоса, который является вторым источником генерации тепла (температура поднимается на 15 °С при производительности, не достигающей расчетного значения).

4. Хроматография

С процессами выделения ферментов в первую очередь связаны операции разрушения клеток, экстракции с помощью растворителей, осаждения, сепарации в фазах твердое вещество -- жидкость. Возможности этих операций как средства для фракционирования ферментов в промышленных масштабах ограничены. Основной удельный вес в процессах фракционирования ферментов приходится на группу операций, построенных на феномене различной миграции ферментов. Наиболее важными из указанных операций являются хроматография и связанные с ней периодические операции сорбции-десорбции. Определенную роль в качестве операций (методов) дифференциальной миграции могут играть также электрофорез и зональное ультрацентрифугирование. Периодические процессы сорбции-десорбции являются специальным случаем дифференциальной миграции, при котором один или несколько компонентов не могут мигрировать или перемещаться под влиянием определенной движущей силы, в то время как другие компоненты к этому способны. Все другие методы дифференциальной миграции по сравнению с дистилляцией характеризуются как подлинно автоматические каскадные.

При каскадных операциях множество ступеней очистки материала располагается в определенной последовательности. Каждая ступень способна обеспечить лишь небольшое обогащение продукта целевым компонентом. Но при этом общая достигаемая мощность сепарирования может быть значительной. Некоторые каскадные системы для биологической сепарации, такие, как противоточные машины, включают автоматическое сопряжение дискретных стадий сепарации. Однако в большинстве систем, включая системы для хроматографии, электрофореза и ультрацентрифугирования, сочетание стадий производится непосредственно в пределах общей системы, а индивидуальные стадии обогащения не могут быть разделены ни в одном случае, кроме теоретических выкладок. В наиболее благоприятных случаях разделяющая способность каскадных методов, используемых при биологической сепарации, выражена настолько же сильно, как и при процессах дистилляции, но при очистке внутриклеточных ферментов она является критической из-за большой сложности подлежащей фракционированию смеси.

Периодические методы сорбции-десорбции по сепарирующей способности занимают промежуточное положение между методами осаждения и хроматографии. Однако их наиболее удобно обсуждать после рассмотрения возможностей таких процессов с сильно выраженной разделяющей способностью, как процессы хроматографии, т. с. когда механизм процессов сорбции-десорбции уже выяснен.

Хроматография определяется как равномерная перколяция, т. е. фильтрация через адсорбирующий слой зернистого материала,, жидкости, проходящей через колонку, заполненную определенным, более или менее тонко раздробленным веществом, которое селективно задерживает конкретные компоненты жидкости. Это пространное определение, сформулированное в 1950 г. A. J. P. Martin, охватывает широкий диапазон селективных методов задержания и элюирования (извлечения из адсорбента) уловленных жидкостей. Для выделения ферментов с применением методов хроматографической сепарации наиболее важными представляются их водные растворы. Ниже будут рассмотрены общие пути селективного задержания ферментов методами хроматографии с тем, чтобы на этой основе обсудить проблемы масштабирования соответствующих процессов.

4.1 Адсорбция

Первые операции хроматографической сепарации, связанные с получением ряда биохимикалиев, были проведены с применением веществ, которые адсорбируют их благодаря силам Ван-дер-Ваальса и пространственному взаимодействию. Указанные силы являются наиболее важными для веществ со сла- бовыраженной полярностью. В случае более полярных веществ серьезная проблема может возникнуть в связи с необратимым характером связывания всех компонентов.

При выделении ферментов применяется ограниченный круг адсорбентов. Широко используется в лабораторных работах фосфат кальция, особенно в кристаллической форме, известной как гидро- ксилапатит. Недостаточно совершенные его механические свойства и ограниченность размера гранул сдерживают применение гид- роксилапатита в колоннах крупных масштабов. Однако недавно проведенные работы свидетельствуют о прогрессе в данном вопросе. При лабораторных работах в определенной мере применяется также алюминий, особенно в форме у-алюмогеля. Однако его механические свойства неудовлетворительны, а текучесть выражена крайне слабо. Для адсорбции белков п редких случаях, но все же применяется диатомитовая земля.

Побочная адсорбция белка при применении диатомитовой земли в качестве основы грунтовочного слоя при фильтрации представляет серьезную проблему.

4.2. Фракционирование посредством ионного обмена.Раздробленные вещества с ионообменными свойствами предста- ляют собой наиболее важные твердофазные продукты для фракционирования ферментов. Широкое индустриальное применение нашли материалы, у которых ионообменные группы присоединены к гидрофобным остовам, как это имеет, например, место у сополимера дивинилстирола. Однако их применение к решению задач получения ферментов ограничивается случаями, когда идет речь об устойчивых ферментах, имеющих небольшие молекулы. Эти ограничения обусловлены слаборазвитой пористостью материалов, которые имеют требуемый размер пор. К тому же гидрофобные остовы молекул полимеров могут в потенции оказывать дестабилизирующее влияние на ферменты. Широко используются в лабораториях ионообменники на основе целлюлозных и декстрановых остовов. Как и в случае адсорбции, общепринято начинать хроматографическое разделение с добавления к системе белка, предполагая, что некоторые или все компоненты смеси прочно связаны друг с другом.

4.2 Сорбция-десорбция

Препаративная хроматография па границе фаз твердое вещество -- жидкость представляет собой самую медленную операцию в общей технологической схеме выделения ферментов. Хотя этот метод не имеет равных по фракционирующей способности, известно множество примеров, когда этой способностью жертвуют ради достижения более высокой производительности. Как было показано для проведения процессов адсорбции, ионного обмена и аффинной хроматографии наиболее пригодны периодические методы. Периодические процессы сорбции-десорбции могут проводиться или в колонках насадочного типа, или путем перемешивания адсорбента с раствором фермента в аппарате емкостного типа с мешалкой с последующим применением метода сепарации и отделения твердой фазы от жидкой. Требования к конструкции насадочных колонок в этом случае могут быть менее строгими, чем в случае зональной хроматографии, так как в процессах сорбции-десорбции желательно использовать весь объем насадки. Однако и при этом следует обеспечить поршневое течение жидкости.

Альтернативный метод, включающий стадию отделения твердой фазы от жидкой, может быть реализован различными путями. При работе с плотными гидрофобными гелями осаждение в поле силы тяжести может быть адекватно стадии вторичной промывки. Для гидрофильных носителей желательно применение центрифугирования или фильтрации. При центрифугировании могут использоваться роторные центрифуги, центрифуги со сплошным ротором или сепараторы. Роторные центрифуги отличаются ограниченной производительностью, а разливающиеся на входе в эти машины суспензии срезающие усилия могут вызывать абразивное повреждение ее компонентов. Эта отличительная способность к повреждению присуща также и применяемым иногда спиральным центрифугам. Отвечают условиям процесса разделения фаз высокопроизводительные центрифуги со сплошным ротором. Но идеальными в этом отношении являются сепараторы, обеспечивающие эффективное обезвоживание и промывку осадка. Если необходимо, могут быть оборудованы автоматическим устройством для разгрузки твердой фазы с помощью приводного поршня.

Если структура осадка позволяет, процессы сорбции и десорбции могут осуществляться при применении адсорбента в движущемся роторе. Дополнительно возможно проведение стадии элюирования, что повышает эффективность разделения. Однако при осуществлении указанной стадии следует соблюдать особую осторожность, поскольку межповерхностные области между порциями растворителя для элюирования могут приводить к образованию ложных профилей процесса элюирования с неупорядоченным распределением в растворителе ферментов. Для решения проблем, связанных с обессоливанием вязких белковых растворов в насадочных колонках, соответствующая операция обессоливания посредством гельфильтрации может проводиться в барабанных центрифугах. Для удаления внешней влаги гель сначала обрабатывают при высоких частотах вращения центрифуги, а затем при малых частотах вращения в нее вводят белковый раствор. Соли и органические соединения с низкой молекулярной массой заполняют тонкие поры геля, в то время как белковые молекулы выбрасываются из него при высоких частотах вращения. Образующийся осадок затем промывают водой.

Выделение и очистка ферментов периодическими методами ионного обмена и адсорбции описаны во многих патентах и публикациях. Так, например, описано выделение стрептокиназы методом обессоливания осветленной культуральной жидкости (250 литров), содержавшей 40 млн. ед. фермента, с помощью смешанного катионо - и анионообменника. Полученный раствор обрабатывали ДЕАЕ-целлюлозой. В другом примере 100 л. мочи человека, содержащей урокиназу, обрабатывали 1 кг. фосфата целлюлозы - сильным катионным ионообменником основного характера. Значение рН снижалось с 8 до 3, и раствор фильтровали. После этого фермент элюировали с помощью 3%-ного аммиака.

5. Электрофорез и центрифугирование

5.1 Электрофорез

Термином «электрофорез» описывается процесс разделения ферментов на основе дифференциальной их миграции в электрическом поле. При проведении лабораторных работ в области аналитической биохимии электрофорез представляет собой метод, обеспечивающий высшую степень разделения ферментов на принципах физико-химической сепарации. Поэтому указанный метод изучался прежде всего с точки зрения препаративной сепарации. Именно для такого предназначения создано несколько специальных приборов. Однако необходимо иметь в виду, что на электрофоретическую подвижность ферментов решающим образом влияет ряд факторов; они могут быть ответственными за разочаровывающие результаты. Во-первых, электрофоретическая подвижность макромолекул низка, вследствие чего соответствующая операция разделения характеризуется малой скоростью и диффузия будет приводить к размыванию концентрационных зон, а ферменты -- смешиваться с медленно движущимися продуктами электролиза. Подвижность молекул варьирует в обратном отношении к вязкости среды. Если отвод тепла от различных участков поперечного сечения сепарационной камеры происходит с разной интенсивностью, то подвижность молекул по поперечному сечению будет варьировать. Это обусловлено вариациями температуры по поперечному сечению и зависимостью вязкости от температуры. Наличие твердой фазы, хотя она сама по себе и не важна как объект для выделения, контролирует конвекционные возмущения потоков в сепарационной камере и вызывает гравитационные разрушения уплотненных зон. Твердая фаза также уменьшает подвижность молекул. Эти и другие проблемы осложняют применение методов перепаративного электрофореза. Капитальные затраты, относящиеся особенно к оформлению процессов охлаждения сепарационной камеры, удалению из нее продуктов электролиза и обеспечению безопасности эксплуатации, довольно высоки. Электрофорез может играть определенную роль только в процессах крупномасштабного выделения некоторых ферментов, особенно при сепарации ферментационных мультисубъединиц, которые подвержены разрушению в присутствии твердой фазы и требуются при хроматографии.

5.2 Зональное ультрацентрифугирование

Центрифугирование при очень высоких частотах вращения было рассмотрено ранее применительно к сепарации твердой и жидкой фаз.

Однако первоначально намечалось как метод высокоразделяющей сепарации частиц, находящихся в растворе. При использовании для целей дифференциальной миграции ротор ультрацентрифуги заполнялся жидкостью определенной плотности, и к оси ротора таким образом добавлялась некоторая кольцевая зона. Эта зона подвергалась воздействию центробежных сил, что заставляло частицы различной плотности мигрировать из нее наружу с различными скоростями. Метод приобрел большое значение при очистке вирусов, которые по своей величине, в общем, на один порядок крупнее молекул ферментов. Гравитационные поля, требующиеся для разделения молекул ферментов, слишком велики. Поэтому в настоящее время очевидно, что использование метода будет и впредь ограничиваться экстремально крупными ферментативными комплексами. Кроме того, даже при использовании наиболее подходящих по величине роторов эффективная вместимость, центрифуг незначительна. Как и в случае электрофореза, метод зонального ультрацентрифугирования имеет то преимущество, что он не связан с наличием в жидкости твердой фазы. Однако присутствующие в растворе химические вещества, создающие градиент плотности, могут повреждать структуру комплексов ферментов.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать