Сущность биосферы
p align="left">Все биохимические циклы биосферы не замкнуты. При этом каждый новый цикл не является точным повторением предыдущего, так как природа не остается неизменной. Вещества и солнечная энергия вовлекаются в круговорот, но вместе с тем энергия в виде тепла уходит, рассеиваясь в пространстве, нередко и органические вещества выходят из круговорота в окружающую среду, накапливаясь в виде залежей. Поэтому и в отдельных биогеоценозах и во всей биосфере круговороты не замкнуты, а сама биосфера является открытой биосистемой

Круговорот углерода в биосфере.

Углерод - один из распространенных элементов на Земле (11-е место); определяющий все многообразие органических соединений. Источником углерода служит углекислый газ, находящийся в атмосфере и растворенный в воде. Захваченный фотосинтезом углерод превращается в сахара, а другими процессами биосинтеза преобразуется в белки и липиды. Но в процессе дыхания и при разложении мертвых тел с помощью редуцентов углерод вновь вступает в круговорот в форме углекислоты. Углерод входит в состав атмосферы в виде CO2, мела, известняков, мрамора CaCO3, магнезита MgCO3, доломита, малахита, ископаемых углей, нефти, природного газа и других полезных ископаемых надолго оставаясь вне круговорота. Но под воздействием корней растений, животных и деятельности человека (отопление, промышленность) углерод может быть освобожден и тогда вновь окажется в круговороте. Простое вещество углерода может существовать в форме алмаза, графита, карбина, аморфного углерода («древесный уголь», «активированный уголь») и фуллерена.

Парниковый эффект

Круговорот углерода совершается по двум циклам: по большому (геологическому) круговороту, происходящему в течение миллионов лет, и по малому, биологическому круговороту, связанному с жизнедеятельностью организмов. Углерод содержится в атмосфере около 23,5 . 1011 т и служит питанием для растений в процессе фотосинтеза; затем в составе органического вещества (биомассы) проходит по пищевым цепям. При дыхании растений, животных и других живых организмов выделяется CO2; таким образом углерод возвращается в атмосферу.

Часть углерода в мертвой органике переходит в ископаемое топливо (каменный уголь, торф); в процессе горения углерод в виде CO2 возвращается в атмосферу.

Проблема "парникового эффекта" CO2 улавливает тепло от нагретой поверхности Земли, препятствуя стоку тепла от Земли в Космос. Это явление получило название "парниковый эффект". Кроме CO2 существует множество других "парниковых газов, которые в зависимости от их вклада" можно расположить в следующий ряд: водяной пар, CO2, метан, фреоны, закись азота (гемиоксид) N2O. Это наиболее значимые.

Заметный рост концентрации CO2 в атмосфере начался в конце 18 века. Это было связано с вырубкой лесов и сжиганием ископаемого топлива. В настоящее время от сжигания различного топлива в атмосферу ежегодно поступает 0,7% общего количества атмосферного CO2. Среднегодовая температура за последние 100 лет возросла ~ на 0,5°С. Соответственно уровень Мирового океана за этот период поднялся на 10-15 см за счет теплового расширения вод Мирового океана и частично - таянием ледников. Все это свидетельствует о том, что человеческая деятельность (антропогенный фактор) оказывает все большее влияние на глобальные процессы, связанные с тепловым режимом нашей планеты.

Круговорот фосфора в биосфере.

Фосфор - «элемент - одиночка». Простое вещество при обычных условиях существует в виде целого ряда аллотропных модификаций, главные из них - белый, красный и черный фосфор. Фосфор в свободном состоянии в природе не встречается, а входит в состав минералов типа апатитов 3Ca3(PO4)2 CaF2 и фосфатов Ca3(PO4)2 . Фосфор - важная составная часть цитоплазмы и нуклеиновых кислот. Редуценты, минерализуют органические соединения фосфора в фосфаты, которые вновь потребляются корнями растений. Много фосфора накапливается в горных породах, в глубинных отложениях, откуда с помощью животных снова возвращается в круговорот.

Круговорот воды на поверхности земного шара известен: действием солнечной энергии в результате испарения создается атмосферная влага, она конденсируется в форме облаков, с их охлаждением вода выпадает виде осадков (дождь, снег, град), которые поглощаются почвой или стекают в реки, озера, моря и океаны. Количество воды, испаряемой растениями с помощью транспирации, всегда больше, чем испаряемой с поверхности водоемов. Круговорот воды в бассейне реки Конго - пример регионального круговорота воды. Вода, теряемая в процессе испарения тропическим лесом и саванной, впоследствии возвращается с осадками в почву. Притом осадки более обильны, чем сток воды в море.

Круговороты, происходящие в биосфере, очень сложны и тесно связаны между собой. Вливаясь в общий биологический круговорот, они составляют основу существования и развития глобальной экосистемы, обеспечивая ее динамическую устойчивость и поступательное развитие. Движущей силой биологического круговорота веществ на нашей планете является жизнедеятельность организмов.

Круговорот азота

Атмосфера на ~ 79% состоит из азота. Азот - биогенный элемент, входит в состав аминокислот и белков в живых организмах. Биохимический цикл азота приведен на рис. 1.8 . Азот может стать доступным для живых организмов только в связанной форме, т. е. в результате азотфиксации. Фиксация азота (в порядке значимости)

1. Промышленная фиксация (см.рис 1.8 в Приложении5).

2. Сине-зеленые водоросли и бактерии.

3. Действие физических сил природы: молний, космического излучения

(N2 + 02 > NО > нитраты) .

Промышленная фиксация - это производство удобрений (КNO3, NаNО3, NН4NO3 и т.п.).

Самый богатый природный источник связанного азота - это бобовые: горох, клевер, соя, люцерна и т. д. На их корнях имеются клубеньки, в которых находятся колонии азотфиксирующих бактерий. Это симбиоз растений и бактерий: растения получают азот, бактерии -углеводы и другое питание. Распад органического вещества и нитрификация происходит с участием сапрофитов - бактерий. Они возвращают азот белков, содержащихся в мертвых растениях и животных, в общий круговорот в форме нитратов. Денитрификация производится особыми бактериями денитрификаторами, которые расщепляют нитраты и возвращают азот. Такие бактерии живут в почвах и водах с малым содержанием 02. Естественный круговорот азота происходит с очень малой скоростью, поэтому он сильно подвержен антропогенным воздействиям. В настоящее время равновесие по азоту в природе нарушено в результате человеческой деятельности: происходит накопление нитратов и других промежуточных продуктов нитрификации в окружающей среде.

Проблемы, связанные с нарушениями в круговороте азота.

Первая проблема связана с накоплением нитратов. Это соединения азота, соли азотной кислоты с радикалом NO3-, входят в состав удобрений, применяются как пищевые добавки. Сами по себе нитраты относительно не токсичны. Но бактерии, обитающие в организме человека, могут превращать их в токсичные нитриты. Нитриты реагируют в желудке с аминами, образуя весьма канцерогенные нитрозамины. (Нитрозамины - самые сильные канцерогены из известных). Нитрит натрия (NaNO2) в смеси с поваренной солью используется для посола мяса и рыбы. В ФРГ 95% мясных изделий подсаливается этой смесью.

Нитриты опасны:

1). Образуются нитрозамины - канцерогены.

2). У грудных и маленьких детей развивается цианоз или синюшность.

Источниками нитрозаминов (Н) являются: машинные масла (было обнаруженодо 3% Н), табачный дым ~ 1 мкг и некоторые косметические средства.

Второй проблемой является проблема оксидов азота. Оксиды азота образуются при всех процессах горения в результате соединения N и О. При горении образуется сначала NO, который затем окисляется до N02, который более токсичен и вреден для живой природы. Из N02 , образуются кислотные осадки в условиях влажного воздуха (кислотные туманы, кислотная роса, кислотные дожди)

N02 + Н20 > HNO3

ПДК по N02 равен 0,08 мг/м3 при длительном воздействии. Признаки хронического отравления N02: головные боли, бессоница, изъязвление слизистых оболочек.

Фотохимический смог образуется в условиях большого количествах выхлопных газов ( около 500 различных углеводородов ), оксидов азота, интенсивного солнечного излучения. Продуктами происходящих химических реакций являются множество опасных веществ - фотооксиданты, озон, ПАН (пироксиацетилнитрат, являющийся смертельно опасным веществом).

Круговорот серы. Проблема кислотных осадков

Круговорот серы в природе сложен и до конца не ясен. Сера распространена в природе в виде множества неорганических соединений. (Известно более 200 серосодержащих минералов). Сера участвует также и в биотическом круговороте: она входит в состав некоторых аминокислот, а также участвует в биохимических процессах образования белков.

В атмосферном воздухе сера присутствуете основном, в виде трех соединений - газообразных оксида серы (1У), сероводорода и аэрозолей сульфатов. Природным источником серы в атмосферном воздухе является сероводород. Среднее время жизни Н2S в атмосфере ~ 2 суток. Он быстро окисляется до SO2. Антропогенный источник SO2 - сжигание топлива, т. к. ископаемое топливо содержит значительное количество серы почти до 4%. В атмосферном воздухе SO2 приводит к образованию аэрозолей и "кислых" дождей. Время жизни SO2 в атмосфере ~ 4 сут.

Существует и природный загрязнитель атмосферного воздуха соединениями серы (SO2, Н2S, сульфаты) - это вулканическая деятельность. При извержениях вулканов эти соединения попадают в нижние слои атмосферы - тропосферу.

Диоксид серы - газ, вредный для здоровья людей, страдающих заболеваниями дыхательных путей. Доказана прямая зависимость частоты заболеваний бронхитом от концентрации SO2 в воздухе:

у = 14,5х - 1,3

где у - процент заболевших бронхитом;

х - концентрация SO2 в воздухе, мг/м3. Примеры: При х = 1,0 мг/м3 число заболевших бронхитом составит 13,2%, при х=5 мг/м3 - у = 71,2%, при х=6,8 мг/м3 - все население заболеет бронхитом. Эти прогнозыподтверждаются исследованиями, проведенными в Европе. В атмосферном воздухе SO2 окисляется до SO3. Газообразный SO3 растворяется в каплях влаги с образованием серной кислоты

SO3(г)+ Н2O(ж) --> H2SO4(ж)

Это приводит к выпадению кислотных осадков, что губительно влияет на живые организмы в природе: в водоемах гибнут рыбы и другие организмы. Кислотные осадки изменяют структуру и состав почв, приводят к гибели растений. Особенно страдают хвойные деревья. И, наконец, кислотные осадки приводят к разрушению и творения человеческих рук. Под влиянием кислоты разрушаются здания, архитектурные и другие памятники, под действием кислотных дождей ускоряется коррозия металлических конструкций.

Таким образом, можно сделать вывод, что биохимическими циклами и круговоротом в целом обеспечиваются важнейшие функции живого вещества в биосфере.

Если же рассматривать биосферу в целом, то в ней можно выделить: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре (в геологическом круговороте).

Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.

Биогеохимический круговорот в биосфере, помимо кислорода, углерода и азота, совершают и многие другие элементы, входящие в состав органических веществ, -- сера, фосфор, железо и др.

3. Продукционная и регуляторная функции биосферы как основа жизнеобеспечения общества

В.И.Вернадский писал: « Живой организм и живое вещество являются закономерной функцией биосферы... в биосфере могут существовать не всякие организмы, а только строго определенные ее структурой».Поэтому морфологические, физиологические свойства организмов должны рассматриваться неразрывно с его геохимическими функциями.

Биосфера - это открытая целостная система, т.е. такая которая, с одной стороны, связана энергоинформационным и вещественным обменом с Космосом, с другой, -- не сводима к простой сумме составляющих ее частей. Целостность биосферы выполняет регуляторную функцию по отношению к объектам и процессам внутри биосферы.

Величайшая заслуга В. И. Вернадского заключается в определении важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли.

Он первым сформулировал понятие биосферы не просто как пространства, заселенного живыми организмами, а как целостной функциональной системы, на уровне которой реализуется неразрывная связь геологических и биологических процессов. Центральная роль в этой системе принадлежит живым организмам, обладающим высокой химической активностью, подвижностью и способностью к самовоспроизведению.

Подчеркивая глобальное значение жизни, В. И. Вернадский рассматривал ее в масштабах целостной биосферы. В его геохимической концепции выделена совокупность живых организмов («живого вещества») как целое. При таком подходе ученого интересовали в первую очередь химические свойства живых организмов, поскольку именно они определяют характер круговорота веществ. «Форма организмов в миграциях элементов земной коры почти совершенно стушевывается,-- писал он,-- но вещество организмов, движение его молекул, его энергия проявляются во всех наблюдаемых явлениях... Необходимо выражать совокупность организмов исключительно с точки зрения их веса, их химического состава, их энергии, их объема и характера отвечающего им пространства». При этом В. И. Вернадский подчеркивал, что биосфера как целостная система обладает определенной организованностью, механизмами самоподдержания: «Живое вещество... становится регулятором действенной энергии биосферы».

Однако эта регуляторная функция чувствительна к конкретным формам живых организмов и механизмам их взаимодействия. Инициированное учением В. И. Вернадского развитие биологии в направлении познания роли жизни в биосферных процессах характеризовалось стремлением раскрыть конкретные механизмы биогенного круговорота вещества как устойчивого глобального явления. Наиболее плодотворной оказалась концепция В. Н. Сукачева о биогеоценозах -- биологических системах, на уровне которых реализуются процессы этого круговорота. По современному представлению, устойчивое поддержание биогенного круговорота основывается на трех генеральных свойствах жизни: ее разнокачественное и разнообразии ее системности, гомеостазировании функций на разных уровнях организации биологических систем.

Физиологическая разнокачественность живых организмов -- фундаментальное условие устойчивого существования жизни как планетарного явления. Форма существования жизни -- вид. С позиций геохимической роли вида его наиболее существенным свойством является неповторимая специфичность обмена веществ. Многообразием видов определяется максимальная эффективность использования внешних источников и форм энергии для синтеза органического вещества и его трансформаций на различных этапах биогенного круговорота вплоть до полной минерализации и повторного вовлечения в цикл (схема). Поддержание круговорота в биогеоценозах основано на функциональной разнокачественности входящих в них видов. В простейшем случае комплементарный набор жизненных форм, необходимый для бесперебойного функционирования биогеоценоза, представлен продуцентами, консументами и редуцентами. Разнообразие видов в каждой из этих экологических категорий обусловливает параллельность и дублирование трофических цепей в конкретных биогеоценозах, что гарантирует устойчивость системы при всегда возможных нарушениях ее состава, депрессиях численности отдельных видов и т. п.

Такое свойство жизни, как системность, способствует бесперебойному осуществлению геохимических функций живого вещества в биосфере. Исходным звеном в цепи круговорота веществ служит отдельный организм. Только на уровне организма реализуется обмен веществ с окружающей средой. Эта функция обеспечивается сложным набором морфофизиологических механизмов, согласованность работы которых поддерживается системой регуляций, определяющих целостность и устойчивость организма как биологической системы. Но отдельные организмы смертны. Устойчивое участие видов в биогенном круговороте осуществляется на уровне популяций -- естественных группировок особей одного вида, вместе обитающих и связанных общностью генофонда и закономерными функциональными взаимодействиями. Популяция в современной биологии рассматривается как биологическая система надорганизменного уровня, характеризующаяся специфической структурой и функцией. При этом функция популяции неоднозначна. С одной стороны, она заключается в сохранении и воспроизведении вида в конкретных условиях. Благодаря эффективному размножению популяция как система оказывается практически бессмертной, хотя происходит непрерывная смена составляющих ее особей (организмов). С другой стороны, популяция входит в состав биогеоценоза как одна из его субсистем. Биогеоценотическая функция популяции -- участие в биогенном круговороте веществ -- определяется видоспецифическим типом обмена. Популяция представляет вид в биогеоценозах; все межвидовые взаимоотношения, обеспечивающие устойчивое существование и функционирование биогеоценозов, происходят на уровне видовых популяций.

Биогеоценозы (экосистемы) -- это следующий этап интегрирования биологических процессов в биосфере. Исторически сложившиеся миоговидовые сообщества поддерживают биогенный круговорот в конкретных географических условиях. Соответственно набор видовых популяций в экосистемах детерминирован этой функцией: в них с необходимостью входят виды, относящиеся к продуцентам, консументам и редуцентам. На их взаимосвязи строится базовая структура экосистемы -- трофическая, включающая не только набор видов, по и систему их взаимодействий, которая делает устойчивыми процессы круговорота веществ и направленные потоки энергии.

На всех рассмотренных уровнях организации биологических систем (организм -- популяция -- биогеоценоз) параллельно их основным функциям действует система гомеостазирования, обеспечивающая устойчивость системы и непрерывность ее функционирования в условиях нестабильной среды. Конкретные формы гомеостаза весьма разнообразны как у разных видов, так и на разных уровнях организации жизни. Общим является подразделение этих механизмов на стабильные, обусловливающие приспособленность системы к устойчивым средним характеристикам среды, и лабильные (функциональные), возникающие в ответ на конкретное состояние среды в каждый данный момент. Два типа, «два уровня» адаптации не переходят друг в друга, а действуют совместно, обеспечивая максимальную приспособленность системы и, соответственно, максимальную эффективность ее функционирования в условиях сложной и динамичной среды.

Российские ученые поднимали вопрос о необходимости изучения межбиогеоценотических связей, говорили о биогеоценотическом покрове Земли как целостной системе. Действительно, хотя биогенный круговорот может быть завершен на уровне отдельного биогеоценоза, в реальных условиях обособленных круговоротов нет. На уровне биосферы процессы, протекающие в отдельных биогеоценозах, объединяются в систему глобальной функции живого вещества. В этой системе не только завершаются отдельные биогеохимические циклы, но и реализуется тесная взаимосвязь их с абиотическими процессами. В едином глобальном цикле функции живого вещества шире, нежели в круговороте отдельных элементов: живые организмы и надорганизменные системы (популяции, сообщества, экосистемы) активно участвуют в формировании рельефа и климата, типов почв, характера циркуляции вод и в других процессах. В конечном итоге многообразием форм жизни определяются свойства биосферы как самоподдерживающейся системы, гомеостаз которой запрограммирован на всех уровнях организации живой материи.

Различные уровни гомеостазирования биологических систем и биосферы в целом сложились на протяжении длительной эволюции Земли. В последнее время стремительное развитие науки и техники привело к тому, что по масштабам воздействия на биосферные процессы деятельность человека оказалась сопоставимой с теми геологическими факторами, которые направляли эволюцию жизни в предшествующие периоды ее развития на нашей планете. В наши дни вступает в силу разработанная В. И. Вернадским концепция ноосферы -- сферы ведущего значения человеческого разума.

Продукционная функция - создание биологической продукции. Человек получает продукты питания и сырье для различных отраслей хозяйства как из природы (лес, рыба, продукция охотничьего промысла и др.), так и с помощью специально созданных биосистем.

Продуктивность биологической системы - ее способность производить подобное себе вещество. Все биосистемы обладают продуктивностью, а системы одного типа сравнивают по уровню продуктивности (скорости продуцирования), о чем судят по величинам продукционных показателей. К основным продукционным показателям относятся продукция и удельная продукция.

Продукция (Р) есть все произведенное данной биосистемой за рассматриваемое время вещество с вычетом трат на обмен независимо от того, находится ли оно в конце исследуемого периода в системе или элиминировано. Обычно подразумевается органическое вещество, синтезированное системой, но оценка продукции чаще всего производится в терминах «живой» массы, включая скелетные и другие подобные образования. Следовательно, к продукции относят все образовавшееся в ней вещество, входящее в «живую» массу системы.

Поскольку любая реальная биосистема воспроизводит себя непрерывно, то при количественной оценке продукции возникает вопрос о рассматриваемом отрезке времени, для которого оценивается продукция биосистемы. Причем этот период времени должен выбираться так, чтобы была возможность оценить особенности функционирования системы во времени и сравнить ее с другими системами.

Для детального изучения продукционного процесса в биосистеме необходимо получить информацию в масштабе времени (сутки, месяц или год), характерном для индивидуального существования системы и ее основных компонентов. Для видов с коротким жизненным циклом (1-2 года) с целью сравнения наиболее удобно использовать в качестве основной единицы времени сутки. Поскольку продукция измеряется или вычисляется за определенный период времени, принимаемый за единицу, она может одновременно рассматриваться и как скорость продукции (скорость продуцирования). Хотя эти определения можно рассматривать как синонимы, но в ряде случаев, например, когда изучается зависимость месячной продукции от изменчивости суточной, удобнее пользоваться понятием скорость продукции.

Помимо временных продукция имеет также пространственные границы. Она оценивается для биосистем либо в естественных границах, либо в расчете на единицу пространства (объема или площади). Так изучают продукцию популяций в их ареалах, сообществ в границах их биотопов, на квадратном метре поверхности, в кубометре воды.

Удельная продукция - продукция за единицу времени в пересчете на единицу биомассы продуцирующей биосистемы. Причем расчет удельной продукции производится обязательно на единицу средней биомассы. В зависимости от выбранной единицы времени получают часовую, суточную, месячную удельную продукцию. Наиболее приемлемым сравнительным показателем является суточная удельная продукция, причем сравниваться могут только системы одного типа: особи с особями, популяции с популяциями.

В нынешних условиях деятельность человечества, к сожалению, нередко нарушает эволюционно сложившееся экологическое равновесие. Объясняется это двойственностью современного положения человека в биосфере. С одной стороны, как биологический объект человечество всеми проявлениями своей жизнедеятельности связано с окружающей средой, включается в сложную систему трофических, биоэнергетических и пространственных отношений. С другой стороны, как социальная система человечество обладает широким кругом потребностей культурного, бытового и иного небиологического характера, высокоразвитой технологией. Оно изымает из окружающей среды биологические ресурсы, вводит в эксплуатацию ресурсы небиологического происхождения, не вовлекаемые в биогенный круговорот и потому невозобновляемые. В окружающую среду выводится большое количество веществ, не участвующих в циклах биологического разложения. Возникает ситуация переэксплуатации природных ресурсов, загрязнения окружающей среды, нарушения естественных гомеостазирующих механизмов биосферы. Последнее приводит к тому, что ситуация уже не может быть изменена естественным биологическим путем.

Современное состояние биосферы характеризуется как критическое. В международном масштабе в наши дни формулируется проблема экологической безопасности, включающая разработку принципиально новых основ взаимодействия различных сфер деятельности человека с естественными биосферными процессами. Решение этой проблемы предусматривает активное регулирующее вмешательство человека в биологические процессы, в частности, направленное регулирование численности и биологической активности экономически важных видов и формирование искусственных биологических систем с заданными свойствами. Это -- задача современной экологии, и в основе ее решения должны лежать глубокие знания естественных законов формирования и функционирования биологических систем разного уровня организации.

В биологическом подходе к проблеме экологической безопасности выделяются два аспекта. Первый предусматривает изучение механизмов влияния антропогенных факторов на биологические системы, адаптивных реакций последних на эти воздействия, диапазонов приспособляемости систем к отдельным факторам и их комплексам.

Это -- проблема устойчивее биологических систем; ее решение ведет к разработке методов оценки состояния систем и нормативов антропогенной нагрузки на них в различных условиях.

Второй аспект -- выяснение путей и результатов косвенного влияния антропогенной нагрузки на состав и характер функционирования биологических систем. Формы такого влияния многообразны: изменение ландшафтов и режима вод, технологические воздействия, роль транспорта и т. д. Конечной задачей является использование экологических закономерностей для активного формирования устойчивых и продуктивных экосистем в условиях антропогенно измененных ландшафтов.

Однако полное решение проблемы экологической безопасности, то есть восстановление нарушенных циклов круговорота веществ, возможно лишь на основе создания замкнутых технологических производств в промышленности и сельском хозяйстве, как бы «дополняющих» естественные формы биологического круговорота. Только циклические безотходные технологии помогут исключить опасность загрязнения биосферы.

Таким образом, решение проблемы экологической безопасности выходит за рамки чисто биологических задач. В сферу современной экологии вовлекаются все достижения науки. Комплексная проблема взаимоотношений человечества и окружающей среды выводит науку о биосфере на новую ступень развития, характеризующуюся направленным воздействием на природные комплексы с целью создания устойчивых форм гармонического взаимодействия человечества и природных систем. Разработанная В. И. Вернадским концепция ноосферы -- основа поддержания разумного равновесия со средой, обеспечивающего благосостояние человечества в условиях научно-технического прогресса.

Заключение

Жизнь «своим существованием - в неразрывной связи со средой жизни -- создает биосферу -определенную оболочку земной коры». Характеризуя ее биогеохимическую организованность, В.И.Вернадский писал: «Организованность обозначает, что эта среда - биосфера -имеет определенное строение, сопряженное с явлением жизни».

«Организованность среды жизни - части планеты - отвечает, прежде всего, составу жизни живых организмов». «Сама биосфера не является случайным образованием -- она отвечает определенной форме организованности. Это - устойчивая динамическая система, равновесие..».«Организованность биосферы есть структурно-вещественно-энергетический результат совокупного (по законам статистического ансамбля) прохождение различными природными системами определенных отрезков времени. Организованность биосферы представляет собой высший уровень развития известных нам природных систем. Это те системы, функционирование которых определяет темп, направление и характер физических, химических, термодинамических, биологических, геологических, иначе говоря, всю совокупность самых разнообразных процессов, протекающих в биосфере».

Но организованность биосферы имеет и относительную самостоятельность: организуясь живыми организмами, она влияет на них, выбирая те, которые строго определены ее структурой.

Эволюция биосферы убедительно свидетельствует, что при любом воздействии на биосферу -- природном или антропогенном -- ее гомеостаз обеспечивается за счет сохранения биологического разнообразия.

При этом безостановочный экономический рост возможен лишь за счет непрерывного расширения использования ресурсов биосферы.

Человек, став мощным геологическим фактором, оказывает глобальное воздействие на биосферу.

Биосфера, со своей стороны, через свои экологические законы, которые он вынужден соблюдать, чтобы выжить, в том числе и закон о биотической регуляции окружающей среды, воздействует на человека.

Создаются условия, очень напоминающие сопряженную эволюцию или коэволюцию человек--биосфера.

Ноосфера («мыслящая оболочка», сфера разума) -- высшая стадия развития биосферы.

Прикладная экология изучает механизмы разрушения биосферы человеком, способы предотвращения этого процесса и разрабатывает принципы рационального использования природных ресурсов.

Список использованной литературы

1. Акимова, Т.А., Хаскин, В.В. Экология. - М.:ЮНИТИ, 2001.

2. Алексеев, В. П. Очерки экологии человека.- М.: «Наука»,1993 .

3. Вернадский, В.И. Биосфера и ноосфера. - М.: Наука, 1989.

4. Вернадский, В.И. Общее понятие о биосфере. // Вернадский В.И. Начало и

5. вечность жизни./Сост., вступ. ст., коммент. М.С.Бастраковой, И.И.Мочалова,

6. В.С.Неаполитанской. - М.: Сов. Россия, 1989.

7. Вернадский, В.И. Научная мысль как планетное явление. //Вернадский В.И.

8. Начало и вечность жизни./Сост., вступ. ст., коммент. М.С.Бастраковой,

9. И.И.Мочалова, В.С.Неаполитанской. - М.:Сов. Россия, 1989.

10.Вронский, В.А. Экология:Словарь-справочник.-Ростов-на-Дону:Феникс,1997.

11.Голубев, В. С. Эволюция: от геохимических систем до ноосферы.- Киев, 2002.

12.Демина, Т. А. Экология,природопользование, охрана окружающей

среды:Пособие для учащихся старших кл.общеобразоват.учреждений.-3-е изд.- М.:Аспект Пресс,1996. 13.Коробкин, В. И., Передельский, Л. В. Экология для студентов вузов.- Ростов- на-Дону, «Феникс»,2001 . 14.Криксунов, Е.А., Пасечник, В.В., Сидорин, А.П., Экология.- М.:Издательский дом "Дрофа", 1995.

15.Миллер, Т. Жизнь в окружающей среде. Т.1., Изд. Прогресс-Пангея, М.: 1993.

16.Общая биология. Справочные материалы, Составитель В.В.Захаров, М.:Издательский дом «Дрофа», 1995.

17.Петров К.М. Общая экология:Взаимодействие обшества и

природы:Учеб.пособие для студентов вузов.-СПб.:Химия,1997.

18.Розанов, Б.Г. Основы учения об окружающей среде. Изд. МГУ, М.,1984.

19.Рузалин, Г.И. Концепция современного естествознания.- М.:1997.

20.Христофорова, Н.К. Основы экологии.- Изд. Дальнаука, Владивосток, 1999.

21.Чернова, Н.М., Былова, А.М., Экология. Учебное пособие для педагогических институтов, М., Просвещение, 1988;

22.Экология и жизнь №4. 97 //М.Н. Иванов. ”Сумеем ли мы сохранить биосферу”

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать