Теория относительности. Эволюция и структурная организация Вселенной

Теория относительности. Эволюция и структурная организация Вселенной

Вопрос №1 Теория относительности

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие все проявления электромагнитного поля и его взаимодействие с зарядами и токами.

Другим следствием развития электродинамики стал переход от ньютоновской концепции дальнодействия, согласно которой взаимодействующие на расстоянии тела воздействуют друг на друга через разделяющую их пустоту, причём взаимодействие осуществляется с бесконечной скоростью, т.е. "мгновенно", к концепции близкодействия, предложенной Майклом Фарадеем, в которой взаимодействие передаётся с помощью промежуточных агентов - полей, заполняющих пространство - и при этом встал вопрос о скоростях распространения как взаимодействий, переносимых полями, так и самих полей. Скорость распространения электромагнитного поля в пустоте вытекала из уравнений Максвелла и оказалась постоянной и равной скорости света.

Однако в связи с этим встал вопрос - относительно чего постоянна скорость света? В максвелловой электродинамике скорость распространения электромагнитных волн оказалась не зависящей от скоростей движения как источника этих волн, так и наблюдателя. Аналогичной оказалась и ситуация с магнитостатическими решениями, вытекающими из уравнений Максвелла: статические магнитные поля и силы Лоренца, действующие на движущиеся в магнитных полях заряды, зависят от скоростей зарядов по отношению к наблюдателю, т.е. уравнения Максвелла оказались неинвариантными относительно принципа относительности и преобразований Галилея - что противоречило ньютоновской концепции абсолютного пространства классической механики.

Специальная теория относительности (СТО) была разработана в конце IXX - начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, Лармора и А. Эйнштейна, и затем представлена Минковским в четырёхмерном формализме, объединяющем пространство и время. Вопрос приоритета в создании СТО имеет дискуссионный характер: основные положения и полный математический аппарат теории, включая групповые свойства преобразований Лоренца, в абстрактной форме были впервые сформулированы А. Пуанкаре в работе 1905 г. "О динамике электрона" на основе предшествующих результатов Г. А. Лоренца, а явный абстрактный вывод базиса теории -- преобразований Лоренца, из минимума исходных постулатов был дан А. Эйнштейном в практически одновременной работе 1905 г. "К электродинамике движущихся сред".

Два постулата Эйнштейна

В этой статье он сформулировал два знаменитых постулата, которые легли в основание частной, или специальной теории относительности (СТО), изменившей классические представления о пространстве и времени.

В первом постулате Эйнштейн развил классический принцип относительности Галилея. Он показал, что этот принцип является всеобщим, в том числе и для электродинамики (а не только для механических систем). Это положение не было однозначным, так как потребовалось отказаться от ньютоновского дальнодействия.

Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).

Второй постулат специальной теории относительности Эйнштейн предложил после анализа электродинамики Максвелла - это принцип постоянства скорости света в вакууме, которая примерно равна 300 000км/с.

Скорость света - это самая большая скорость в нашей Вселенной. Больше скорости 300 000км/с в окружающем нас мире быть не может.

В современных ускорителях микрочастицы разгоняются до огромных скоростей. Например, электрон разгоняется до скорости vе = 0,9999999 С, где vе, С - скорости электрона и света соответственно. При этом, с точки зрения наблюдателя, масса электрона возрастает в 2500 раз:

Здесь me0 - масса покоя электрона, me - масса электрона на скорости ve.

Достичь скорости света электрон не может. Однако существуют микрочастицы, которые имеют скорость света, их называют "люксоны".

К ним относятся фотоны и нейтрино. У них практически нет массы покоя, их нельзя затормозить, они всегда движутся со скоростью света с. Все остальные микрочастицы (тардионы) движутся со скоростями меньше скорости света. Микрочастицы, у которых скорость движения могла бы быть больше скорости света, называют тахионами. Таких частиц в нашем реальном мире нет.

Исключительно важным результатом теории относительности является выявление связи между энергией и массой тела. При малых скоростях

где E = m0c2-энергия покоя частицы с массой покоя m0,а EK - кинетическая энергия движущейся частицы.

Огромным достижением теории относительности является установленный ею факт эквивалентности массы и энергии (E = m0c2). Однако речь идет не о превращении массы в энергию и наоборот, а о том, что превращение энергии из одного вида в другой соответствует переходу массы из одной формы в другую. Энергию нельзя заменить массой, так как энергия характеризует способность тела выполнять работу, а масса - меру инерции.

При скоростях релятивистских, близких к скорости света:

где E -энергия, m - масса частицы, m - масса покоя частицы, с - скорость света в вакууме.

Из приведенной формулы видно, что для достижения скорости света частице нужно сообщить бесконечно большую энергию. Для фотонов и нейтрино эта формула несправедлива, так как у них v = c.

Релятивистские эффекты

Под релятивистскими эффектами в теории относительности понимают изменения пространственно-временных характеристик тел при скоростях, соизмеримых со скоростью света.

В качестве примера обычно рассматривается космический корабль типа фотонной ракеты, который летит в космосе со скоростью, соизмеримой со скоростью света. При этом неподвижный наблюдатель может заметить три релятивистских эффекта:

1.Увеличение массы по сравнению с массой покоя. С ростом скорости растет и масса. Если бы тело могло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Эйнштейн доказал, что масса тела есть мера содержащейся в ней энергии (E= mc2). Сообщить телу бесконечную энергию невозможно.

2.Сокращение линейных размеров тела в направлении его движения. Чем больше будет скорость космического корабля, пролетающего мимо неподвижного наблюдателя, и чем ближе она будет к скорости света, тем меньше будут размеры этого корабля для неподвижного наблюдателя. При достижении кораблем скорости света его наблюдаемая длина будет равна нулю, чего быть не может. На самом же корабле космонавты этих изменений не будут наблюдать. 3. Замедление времени. В космическом корабле, движущемся со скоростью, близкой к скорости света, время течет медленнее, чем у неподвижного наблюдателя.

Эффект замедления времени сказался бы не только на часах внутри корабля, но и на всех процессах, протекающих на нем, а также на биологических ритмах космонавтов. Однако фотонную ракету нельзя рассматривать как инерциальную систему, ибо она во время разгона и торможения движется с ускорением (а не равномерно и прямолинейно).

Так же, как и в случае квантовой механики, многие предсказания теории относительности противоречат интуиции, кажутся невероятными и невозможными. Это, однако, не означает, что теория относительности неверна. В действительности то, как мы видим (либо хотим видеть) окружающий нас мир и то, каким он является на самом деле, может сильно различаться. Уже больше века учёные всего мира пробуют опровергнуть СТО. Ни одна из этих попыток не смогла найти ни малейшего изъяна в теории. О том, что теория верна математически, свидетельствует строгая математическая форма и чёткость всех формулировок.

О том, что СТО действительно описывает наш мир, свидетельствует огромный экспериментальный опыт. Многие следствия этой теории используются на практике. Очевидно, что все попытки "опровергнуть СТО" обречены на провал потому, что сама теория опирается на три постулата Галилея (которые несколько расширены), на основе которых построена ньютонова механика, а также на дополнительные постулаты.

Результаты СТО не вызывают какого-либо сомнения в пределах максимальной точности современных измерений. Более того, точность их проверки является настолько высокой, что постоянство скорости света положено в основание определения метра -- единицы длины, в результате чего скорость света становится константой автоматически, если измерения вести в соответствии с метрологическими требованиями.

В 1971г. вСША был поставлен эксперимент по определению замедления времени. Изготовили двое совершенно одинаковых точных часов. Одни часы оставались на земле, а другие помещались в самолет, который летал вокруг Земли. Самолет, летящий по круговой траектории вокруг Земли, движется с некоторых ускорением, и значит, часы на борту самолета находятся в другой ситуации по сравнению с часами, покоящимися на земле. В соответствии с законами теории относительности часы-путешественники должны были отстать от покоящихся на 184 нс, а на самом деле отставание составило 203 нс. Были и другие эксперименты, в которых проверялся эффект замедления времени, и все они подтвердили факт замедления. Таким образом, разное течение времени в системах координат, движущихся относительно друг друга равномерно и прямолинейно, является непреложным экспериментально установленным фактом.

Общая теория относительности

В 1915 году Эйнштейн завершил создание новой теории, объединяющей теории относительности и тяготения. Он назвал ее общей теорией относительности (ОТО). После этого ту теорию, которую Эйнштейн создал в 1905 году и которая не рассматривала тяготение, стали называть специальной теорией относительности.

В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

Общая теория относительности основывается на двух постулатах специальной теории относительности и формулирует третий постулат - принцип эквивалентности инертной и гравитационной масс. Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях (а не только при движении с большими скоростями). Этот вывод связывает ОТО с геометрией, то есть в ОТО наблюдается геометризация тяготения. Классическая геометрия Евклида для этого не годилась. Новая геометрия появилась еще в XIXв. В трудах русского математика Н. И. Лобачевского, немецкого - Б. Римана, венгерского - Я. Больяйя.

Геометрия нашего пространства оказалась неевклидовой.

ОТО- физическая теория, в основе которой лежит ряд экспериментальных фактов. Рассмотрим некоторые из них. Гравитационное поле влияет на движение не только массивных тел, но и света. Луч света отклоняется в поле Солнца. Измерения, проведенные в 1922г. английским астрономом А. Эддингтоном во время солнечного затмения, подтвердили это предсказание Эйнштейна.

В ОТО орбиты планет незамкнуты. Небольшой эффект такого рода можно описывать как вращение перигелия эллиптической орбиты. Перигелий - это ближайшая к Солнцу точка орбиты небесного тела, которое движется вокруг Солнца по эллипсу, параболе или гиперболе. Астрономам известно, что перигелий орбиты Меркурия поворачивается за столетие примерно на 6000". Это объясняется гравитационными возмущениями со стороны других планет. При этом оставался неустранимый остаток около 40" за столетие. В 1915г. Эйнштейн объяснил это расхождение в рамках ОТО.

Существуют объекты, в которых эффекты ОТО играют определяющую роль. К ним относятся "черные дыры". "Черная дыра" возникает тогда, когда звезда сжимается настолько сильно, что существующее гравитационное поле не выпускает во внешнее пространство даже свет. Поэтому из такой звезды не исходит никакой информации. Многочисленные астрономические наблюдения указывают на реальное существование таких объектов. ОТО дает четкое объяснение этому факту.

В 1918г. Эйнштейн предсказал на основе ОТО существование гравитационных волн: массивные тела, двигаясь с ускорением, излучают гравитационные волны. Гравитационные волны должны распространяться с той же скоростью, что электромагнитные, то есть со скоростью света. По аналогии с квантами электромагнитного поля принято говорить о гравитонах как о квантах гравитационного поля. В настоящее время формируется новая область науки - гравитационно-волновая астрономия. Есть надежда, что гравитационные эксперименты дадут новые результаты.

Свойства пространства-времени в ОТО зависят от распределения тяготеющих масс, и движение тел определяется кривизной пространства-времени.

Но влияние масс сказывается только на метрических свойствах часов, так как меняется лишь частота при переходе между точками с разными гравитационными потенциалами. Иллюстрацией относительного хода времени, по мнению Эйнштейна, могло бы стать обнаружение процессов вблизи предсказанных им черных дыр.

На основании уравнений теории относительности отечественный математик-физик А. Фридман в 1922г. нашел новое космологическое решение уравнений ОТО. Это решение указывает на то, что наша Вселенная не стационарна, она непрерывно расширяется. Фридман нашел два варианта решения уравнений Эйнштейна, то есть два варианта возможного развития Вселенной. В зависимости от плотности материи Вселенная или будет и далее расширяться, или через какое-то время начнет сжиматься.

В 1929г. американский астроном Э. Хаббл экспериментально установил закон, который определяет скорость разлета галактик в зависимости от расстояния до нашей галактики. Чем дальше разбегающаяся галактика, тем больше скорость ее разбегания. Хаббл использовал эффект Доплера, в соответствии с которым у источника света, удаляющегося от наблюдателя, длина волны увеличивается, то есть смещается к красному концу спектра (краснеет).

ОТО в настоящее время -- самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. По ОТО, перигелии орбит при каждом обороте планеты вокруг Солнца должны перемещаться на долю оборота, равную 3 (v/c)2. Для перигелия Меркурия получается 43", угол поворота перигелия за сто лет составляет 42,91". Эта величина соответствует обработке наблюдений за Меркурием с 1765 по 1937 г. Так была объяснена прецессия перигелия орбиты Меркурия.

Экспериментальные подтверждения теории относительности, приведшие к изменению свойств времени и пространства:

а - схема установки для доказательства задержки времени у движущихся мезонов, предсказанная СТО, в гравитационном поле Земли; б - искривление линии распространения света вблизи Солнца, предсказанные ОТО и подтверждённые наблюдениями; в - схема прецессии орбиты Меркурия, объясняемая ОТО (иначе орбита представляла бы собой неподвижный эллипс)

Затем, в 1919, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что подтвердило предсказания общей теории относительности. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности -- существования чёрных дыр.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1% (для указанных выше трёх классических явлений). Существуют однако явления, не объясняемые с помощью ОТО: эффект "Пионера"; flyby эффект; увеличение астрономической единицы; квадрупольно-октупольная аномалия фонового микроволнового излучения; тёмная энергия; тёмная материя.

В связи с этими и другими проблемами ОТО (отсутствие тензора энергии-импульса гравитационного поля, невозможность квантования ОТО) теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Таким образом, все известные научные факты подтверждают справедливость общей теории относительности, которая является современной теорией тяготения.

Вопрос №2 Эволюция и структурная организация Вселенной

Вселенная - окружающий нас мир, бесконечный в пространстве, во времени и по многообразию форм заполняющего его вещества и его превращений.

Мир един, гармоничен и одновременно имеет многоуровневую организацию. Вселенная - это мегамир. Нет жесткой границы, однозначно разделяющей микро-, макро- и мегамиры. При несомненном качественном отличии они взаимосвязаны. Так, наша Земля представляет макромир, но в качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира. Вселенная представляет собой упорядоченную систему отдельных взаимосвязанных элементов различного порядка. Это небесные тела (звезды, планеты, спутники, астероиды, кометы), планетные системы звезд, звездные скопления, галактики.

Звезды вместе с их планетными системами и межзвездной средой образуют галактики. Галактика -гигантская звездная система, насчитывающая более 100млрд звезд, обращающихся вокруг ее центра. Внутри галактики отмечают звездные скопления. Звездные скопления - группы звезд, разделенные между собой меньшим расстоянием, чем обычные межзвездные расстояния. Звезды в такой группе связаны общим движением в пространстве и имеют общее происхождение. Галактики образуют метагалактику. Метагалактика - грандиозная совокупность отдельных галактик и скоплений галактик.

В современной трактовке понятия "метагалактика" и "Вселенная" чаще отождествляют. Но иногда метагалактика толкуется лишь как видимая часть Вселенной, при этом Вселенная сводится к бесконечности. Однако если принять, что за пределами метагалактики существует космический вакуум, то такую форму материи трудно отнести к Вселенной, потому что там нет устойчивых элементарных частиц и атомов, нет звезд, нет галактик. Поэтому для бесконечного мира более подходит философское понятие материального мира, частью которого является Вселенная или метагалактика.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать