Универсальный эволюционизм как основа современной научной картины мира
p align="left">Глобальный эволюционизм -- это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной, кроме того, свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие глобального эволюционного процесса начатого Большим взрывом.

Самоорганизация -- наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур I ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.

Эти принципиальные особенности современной естественнонаучной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.

Однако есть еще одна особенность современной научной картины мира, отличающая ее от прежних вариантов. Она заключается в признании историчности, а, следовательно, и принципиальной незавершенности настоящей, да и любой другой научной картины мира. Та, которая есть сейчас, порождена как предшествующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества, изменение его ценностных ориентации, осознание важности исследования уникальных природных систем, в которые составной часть» включен и человек, меняют стратегию научного поиска, само отношение человека к миру [6].

Глава 2. Принципы универсального эволюционизма.

2.1 Системный подход.

Принципы глобального (универсального) эволюционизма позволяют единообразно описать огромное разнообразие процессов, протекающих в неживой природе, живом веществе, обществе [7]. Эта концепция базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин, и вместе с тем включает в свой состав ряд мировоззренческих установок.

Универсальный (глобальный) эволюционизм часто характеризуется как принцип, обеспечивающий экстраполяцию эволюционных идей, получивших обоснование в биологии, а также в астрономии и геологии, на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса. Это действительно очень важный аспект в понимании глобального эволюционизма. Но он не исчерпывает содержания данного принципа.

Возникновение в 40-50-х годах нашего столетия общей теории систем и становление системного подхода внесло принципиально новое содержание в концепции эволюционизма. Системное рассмотрение объекта предполагает, прежде всего, выявление целостности исследуемой системы, ее взаимосвязей с окружающей средой, анализ в рамках целостной системы свойств составляющих ее элементов и их взаимосвязей между собой .

Практически все объекты, которые современная наука включает в сферу своего исследования, носят системный и эволюционный характер. Предметом научного исследования становятся не отдельные, выделенные части целого, которые раньше исследовались изолированно, а целостные комплексы, которые в качестве неотъемлемого компонента включают человека [10].

Системное познание и преобразование мира предполагает:

Рассмотрение объекта деятельности (теоретической и практической) как системы, т.е. как ограниченного множества взаимодействующих элементов.

Определение состава, структуры и организации элементов и частей системы, обнаружения главных связей между ними.

Выявление внешних связей системы, выделения из них главных.

Определение функции системы и ее роли среди других систем.

Анализ диалектики структуры и функции системы.

Обнаружение на этой основе закономерностей и тенденций развития системы.

Таким образом, для изучения объектов в рамках системного подхода оказывается недостаточно поэлементного анализа, поскольку в процессе исследования может быть обнаружен такой уровень объектов, где экспериментирование над частью с неизбежностью затрагивает целое, что приводит к радикальной трансформации целостной системы в направлении, идущем не на сохранение данной системы, и ставит под вопрос возможность существования человека.

Все это означает, что в процессе исследования объектов, необходимо анализировать их не изолированно, а как часть более широкой целостной системы, учитывая, что от манипулирования с этой частью зависит сохранение целостной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали - координирующие, обеспечивают корреляцию системы, ни одна часть системы не может измениться без изменения других. Связи по вертикали - связи субординации, одни элементы системы являются более значимыми, чем другие, и подчиняются им.

Система обладает признаком целостности - это означает что все ее составные части, соединяясь в единое целое, образуют нечто обладающее качествами, не сводимыми к качествам отдельных элементов.

Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы [10].

2.2 Эволюционный подход.

Возникновение концепции глобального эволюционизма во многом связано с расширением границ эволюционного подхода, принятого в биологической и социальных науках. Сам факт исторического появления и эволюции этих систем (или, как их называют некоторые ученые, видов движения) заставляет усомниться в абсолютной статичности и вечности других систем. Загадочность качественных скачков к биологическому и от биологического к социальному миру, наверняка можно постичь только исходя из допущения необходимости подобных переходов между другими системами. То есть, исходя из факта наличия эволюции мира на последних этапах его истории, можно сделать предположение, что он в целом является эволюционной системой, то есть и все другие системы (помимо биологической и социальной) сформировались в результате эволюции. Это высказывание и есть самая общая формулировка парадигмы глобального эволюционизма.

Эволюционный подход к существующим эволюционным системам не подразумевает, что все они находятся в постоянном процессе эволюции, а наоборот констатирует необходимость их последовательного формирования на определенных этапах истории. Вообще эволюция, как процесс, относящийся ко всей Вселенной в каждый момент времени реализуется локально только в одном виде движения. То есть всегда существует только одна локальная система (то есть не тождественная всему миру), которую можно назвать эволюционной, в которой происходит появление принципиально новых, уникальных определений мира [7].

Чтобы отличить эту систему от других, уже прошедших эволюцию, можно ввести термин “авангард эволюции”. Естественно, что авангардом эволюции всегда является последнее по времени появившееся в мире форма движения (сейчас социальная система). Все предыдущие виды движений, пройдя эволюционный этап и достигнув равновесного состояния (не статичного, а, скорее всего состояния медленного изменения параметров, либо повторяющегося процесса развития отдельных элементов) служат основой для формирования и эволюции нового движения. Возможны появления и новых характеристик у “предыдущих” движений, но они необходимо связаны с эволюцией последнего по времени появления типа движения (системы) - авангарда эволюции [7].

Принцип эволюции получил наиболее полную разработку в рамках биологии и стал ее фундаментальным принципом со времен Ч.Дарвина. Однако вплоть до наших дней он не был доминирующим в естествознании. Во многом это было связано с тем, что длительное время лидирующей научной дисциплиной выступала физика, которая транслировала свои идеалы и нормы в другие отрасли знания.

Согласно эволюционной теории Дарвина, в мире происходит непрерывное появление все более сложно организованных живых систем, упорядоченных форм и состояний живого.

Иначе говоря, биологическая теория говорит о созидании в процессе эволюции все более сложных и упорядоченных живых систем.

Здесь необходимо выделить важную характеристику направленности самоорганизующихся процессов, которую можно обозначить как принцип экономии энтропии, дающей «преимущество» сложным системам по сравнению с простыми. Этот принцип звучит так: если в данных условиях возможны несколько типов организации материи, не противоречащих законам сохранения и другим принципам, то реализуется и сохранит наибольшие шансы на стабильность и последующее развитие именно тот, который позволяет утилизировать внешнюю энергию в наибольших масштабах, наиболее эффективно.

Формирование самоорганизующихся систем при этом можно рассматривать в качестве особой стадии развивающегося объекта, своего рода «синхронный срез» некоторого этапа его эволюции. Сама же эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другому («диахронный срез»). В результате анализ эволюционных характеристик оказывается неразрывно связанным с системным рассмотрением объектов. Универсальный эволюционизм как раз и представляет собой соединение идеи эволюции с идеями системного подхода[8].

2.3 Термодинамический подход.

В классической науке (XIX в.) господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию, что энергетическом смысле и означало неупорядоченность, т.е. хаос. Такой взгляд на вещи сформировался под воздействием равновесной термодинамики.

Эта наука занимается процессами взаимопревращения различных видов энергии. Ею установлено, что взаимные превращения тепла и работы неравнозначны. Работа может полностью превратиться в тепло трением или другими способами, а вот тепло полностью превратить в работу принципиально не возможно. Это означает, что во взаимных переходах одних видов энергии в другие существует выделенная самой природой направленность. Знаменитое второе начало термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так «Теплота не переходит самопроизвольно от холодного тела к более горячему». Закон сохранения и превращения энергии в принципе не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности такого никогда не происходит. Вот эту-то односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало.

Для отражения этого процесса в термодинамику было введено новое понятие -- энтропия. Под энтропией стали понимать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: «При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает». Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это -- наиболее простое состояние системы, или состояние термодинамического равновесия, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно полному хаосу [6].

Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая рассеется, т.е. в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или полный хаос. Если наша Вселенная -- замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, как предполагает классическая термодинамика, и возвратится.

Возникает, правда, любопытный вопрос: если Вселенная эволюционирует только к хаосу, то, как же она могла возникнуть и сорганизоваться до нынешнего упорядоченного состояния? Однако этим вопросом классическая термодинамика не задавалась, ибо формировалась в эпоху, когда нестационарный характер Вселенной даже не обсуждался. В это время единственным немым укором термодинамике служила дарвиновская теория эволюции. Ведь предполагаемый этой теорией процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса, Такая явная «нестыковка» законов развития неживой и живой природы, по меньшей мере, удивляла.

Удивление это многократно возросло после замены модели стационарной Вселенной на модель развивающейся Вселенной, в которой ясно просматривалось нарастающее усложнение организации материальных объектов -- от элементарных и субэлементарных частиц в первые мгновения после Большого взрыва до наблюдаемых ныне звездных и галактических систем. Ведь если принцип возрастания энтропии столь универсален, как же могли возникнуть такие сложные структуры? Случайным «возмущением» в целом равновесной Вселенной их уже не объяснить. Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции.

Эти противоречия привели к формированию синергетики [6].

Глава 3. Обоснование универсального эволюционизма.

3.1 Теория нестационарной Вселенной.

Определяющее значение в утверждении универсального эволюционизма как принципа построения современной общенаучной картины мира сыграли три важнейших концептуальных направлений: во-первых, теория нестационарной Вселенной; во-вторых, синергетика; в-третьих, концепция биосферы и ноосферы [10].

Теория нестационарной Вселенной ввела следующие представления о космической эволюции: примерно 15-20 млрд. лет назад из точки сингулярности в результате Большого взрыва началось расширение Вселенной, которая вначале была горячей и очень плотной, но по мере расширения охлаждалась, а вещество во Вселенной по мере остывания конденсировалось в галактики. Последние, в свою очередь, разбивались на звезды, собирались вместе, образуя большие скопления. В процессе рождения и умирания первых поколений звезд происходил синтез тяжелых элементов. После превращения звезд в красные гиганты, они выбрасывали вещество, конденсирующееся в пылевых структурах. Из газово-пылевых облаков образовывались новые звезды, и возникало многообразие космических тел[2]. Теория Большого взрыва рисовала картину эволюции Вселенной в целом. В ее истоках лежало открытие А.А.Фридмана. Анализируя «мировые уравнения» Эйнштейна, описывающие метрику четырехмерного искривленного пространства-времени, А.А.Фридман нашел нестационарные решения мировых уравнений и предложил три возможных модели Вселенной. В двух из них радиус кривизны пространства должен был расти и Вселенная, соответственно, расширяться; третья модель предлагала картину пульсирующей Вселенной с периодически меняющимся радиусом кривизны[3,10].

Модель расширяющейся Вселенной вела к трем важным предсказаниям, которые впоследствии оказалось возможным проверить путем эмпирических наблюдений. Речь идет, во-первых, о том, что по мере расширения Вселенной галактики удаляются друг от друга со скоростью, пропорциональной расстоянию между ними; во-вторых, эта модель предсказывала существование микроволнового фонового излучения, пронизывающего всю Вселенную и являющуюся реликтовым остатком его горячего состояния в начале расширения, в-третьих, данная модель предсказывала образование легких химических элементов из протонов и нейтронов в первую минуту после начала расширения.

В середине двадцатого столетия идеям эволюции Вселенной был дан новый импульс. Теория расширяющейся Вселенной испытывала значительные трудности при попытках охарактеризовать наиболее загадочные этапы эволюции от большого взрыва до мировой секунды после него. Ответы на эти вопросы во многом были даны в рамках теории раздувающейся Вселенной.

Ключевым элементом раздувающейся Вселенной была так называемая «инфляционная фаза» - стадия ускоренного расширения. Она продолжалась 10-32 сек., и в течение этого времени диаметр Вселенной увеличился в 1050 раз. После колоссального расширения окончательно установилась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц[2].

Новая теория позволяет рассматривать наблюдаемую Вселенную лишь в качестве малой части Вселенной как целого, а это значит, что вполне правомерно предположить существование достаточно большого числа эволюционирующих Вселенных. Причем большинство из них в процессе эволюции не способны породить того богатства форм организации, которые свойственны нашей Вселенной (Метагалактике).

Новые данные, полученные в космологии, позволяют предположить, что объективные свойства Вселенной как целого создают возможность возникновения жизни, разума на определенных этапах ее эволюции. Причем потенциальные возможности этих процессов были заложены уже в начальных стадиях развития Метагалактики.

Все эти научные результаты дают основания рассмотреть их как один из факторов утверждения идеи глобального эволюционизма в современной научной картине мира [10].

3.2 Синергетика.

Специфика синергетики заключается в том, что основное внимание она уделяет согласованному состоянию процессов самоорганизации в сложных системах различной природы. Она изучает любые самоорганизующиеся системы, состоящие из многих подсистем. Самоорганизация рассматривается как одно из основных свойств движущейся материи и включает все процессы самоструктурирования, саморегуляции, самовоспроизведения.

Довольно долго самоорганизация соотносилась только с живыми системами, что же касается объектов неживой природы, то считалось, что если они и эволюционируют, то лишь в сторону хаоса и беспорядка, что обосновывалось вторым началом термодинамики. Однако здесь возникла кардинальная проблема - как из подобного рода систем могли возникнуть объекты живой природы, способные к самоорганизации. Чтобы решить ее, требовалось изменить основополагающие принципы науки, и в частности устранить разрывы между эволюционной парадигмой биологии и абстрагированием от эволюционных идей в физической картине мира.

Постепенное размывание классической парадигмы началось в XIX в. Первым важным шагом была формулировка второго начала термодинамики, поставившая под вопрос вневременной характер физической картины мира. Моменты времени оказались нетождественными один другому и ход событий невозможно повернуть вспять, чтобы воспрепятствовать возрастанию энтропии. В принципе события оказываются невоспроизводимыми, а это означает, что время обладает направленностью.

Последующее развитие физики привело к осознанию ограниченности идеализации закрытых систем и описаний в терминах таких систем реальных физических процессов. Подавляющее большинство природных объектов является открытыми системами, обменивающимися энергией, веществом и информацией с окружающим миром, а определяющую роль в радикально изменившемся мире приобретают неустойчивые, неравновесные состояния[10].

В экспериментальных исследованиях было продемонстрировано, что, удаляясь от равновесия, термодинамические системы приобретают принципиально новые свойства и начинают подчиняться особым законам. При сильном отклонении от равновесной термодинамической ситуации возникает новый тип динамического состояния материи, названный диссипативными структурами. Тип диссипативной структуры в значительной степени зависит от условий ее образования, при этом особую роль в отборе механизма самоорганизации могут играть внешние поля.

Идеи самоорганизации нашли свое отражение в работах Э. Янча. Он попытался разработать унифицированную парадигму, способную раскрыть всеобъемлющий феномен эволюции. Для него все уровни как неживой, так и живой материи, равно как и состояния социальной жизни развиваются как диссипативные структуры. Эволюция с этих позиций выступает как целостный процесс, составными частями которого являются физико-химический, биологический, социальный, экологический, социально-культурный процессы. Раскрывая механизмы космической эволюции, Янч рассматривает в качестве ее источника нарушение симметрии. Нарушенная симметрия, преобладание вещества над антивеществом во Вселенной становится источником многообразия различного рода сил - гравитационных, электромагнитных, сильных, слабых. Следующий этап в глобальной эволюции - возникновение уровня жизни, которая является тонкой сверхструктурированной физической реальностью. Дальнейшее усложнение первейших живых систем приводит к возникновению нового уровня глобальной эволюции - коэволюции организмов и экосистем. Здесь возникает специфическое свойство, связанное с мыслительной деятельностью. Разум выступает как принципиально новое качество самоорганизующихся систем, который способен к рефлексии над теми пройденными этапами и к предвидению будущих состояний системы.

Идеи самоорганизации и эволюционизма выступают ядром формирования современной научной картины мира. Если до синергетики не было концепции, которая позволяла бы свести в единое целое результаты, полученные в различных областях знания, то с ее возникновением открылись принципиально новые возможности формирования целостной общенаучной картины мира [10].

3.3 Теория биологической эволюции. Концепция биосферы и ноосферы.

Уже в 20-х годах нашего столетия в биологии начало формироваться новое направление эволюционного учения, которое было связано с именем В.И.Вернадского и которое называют учением об эволюции биосферы и ноосферы. Его, несомненно, следует рассматривать как один из существенных факторов естественнонаучного обоснования идеи универсального эволюционизма [10].

Биосферой именуют область существования ныне живущих организмов, охватывающую часть атмосферы до высоты озонового слоя, всю гидросферу и часть литосферы, особенно ее кору выветривания. Границы биосферы являются одновременно и границами распространения жизни на Земле. Биосфера включает в себя как вещество и пространство, так и все живые организмы

Биосфера, по В.И.Вернадскому, представляет собой целостную систему, обладающую высочайшей степенью самоорганизации и способностью к эволюции. Она является результатом достаточно длительной эволюции во взаимосвязи с неорганическими условиями» и может быть рассмотрена как закономерный этап в развитии материи.

Специфической особенностью биосферы выступает организованность. Организованность биосферы - организованность живого вещества - должна рассматриваться как равновесия, подвижные, все время колеблющиеся в историческом и в географическом времени около точно выражаемого среднего. Смещения или колебания этого среднего непрерывно проявляются не в историческом, а в геологическом времени.

В результате саморазвития и под влиянием антропогенных факторов в биосфере могут возникнуть такие состояния, которые приводят к качественному изменению составляющих ее систем. В этом смысле единство изменчивости и устойчивости в биосфере есть результат взаимодействия слагающих ее компонентов.

В концепции В.И.Вернадского жизнь предстает как целостный эволюционный процесс, включенный в качестве особой составляющей в космическую эволюцию. Своим учением о биосфере и ноосфере В.И.Вернадский продемонстрировал неразрывную связь планетарных и космических процессов [1].

В.И.Вернадский подчёркивает два важнейших, с геологической точки зрения, положения, во-первых, планетный, геологически закономерный характер жизни, и, во-вторых, теснейшую связь всех геологических процессов в биосфере с деятельностью живого вещества. Таким образом, понимание жизни как планетного явления приводит к представлениям о прямой зависимости существования биосферы от условий, созданных геологическими процессами.

Таким образом, Вернадский сводит проблему зарождения жизни к проблеме возникновения биосферы. В.И.Вернадский пишет «...Первое появление жизни при создании биосферы должно было произойти не в виде одного какого-нибудь вида организма, а в виде их совокупности, отвечающей геохимическим функциям жизни. Должны были сразу появиться биоценозы». При этом он допускает в качестве механизма возникновения жизни как абиогенез (зарождение вне живого), так и проникновение живого вещества извне, из космоса. Абиогенез, как считает Вернадский, несмотря на то, что мы не наблюдаем сейчас его проявлений, мог существовать в определённых условиях до появления биосферы[1].

В книге «Научная мысль как планетное явление» В.И.Вернадский анализирует геологическую историю Земли и утверждает, что наблюдается переход биосферы в новое состояние - в ноосферу под действием новой геологической силы, научной мысли человечества.

Ноосфера («мыслящая оболочка», сфера разума) -- высшая стадия развития биосферы. Это «сфера взаимодействия природы и общества, в пределах которой разумная человеческая деятельность становится главным, определяющим фактором развития».

Понятие «ноосфера» появилось в связи с оценкой роли человека в эволюции биосферы. Непреходящая ценность учения В. И. Вернадского о ноосфере именно в том, что он выявил геологическую роль жизни, живого вещества в планетарных процессах, в создании и развитии биосферы и всего разнообразия живых существ в ней. Среди этих существ он выделил человека как мощную геологическую силу. Эта сила способна оказывать влияние на ход биогеохимических и других процессов в охваченной ее воздействием среде Земли и околоземном пространстве. Вся эта среда весьма существенно изменяется человеком благодаря его труду. Он способен перестроить ее согласно своим представлениям и потребностям, изменить фактически ту биосферу, которая складывалась в течение всей геологической истории Земли.

В. И. Вернадский писал, что становление ноосферы «есть не случайное явление на нашей планете», «создание свободного разума», «человеческого гения», а «природное явление, резко материально проявляющееся в своих следствиях в окружающей человека среде». Иными словами, ноосфера -- окружающая человека среда, в которой природные процессы обмена веществ и энергии контролируются обществом.

Воздействие человеческого общества как единого целого на природу по своему характеру резко отличается от воздействий других форм живого вещества. В. И. Вернадский писал: «Раньше организмы влияли на историю тех атомов, которые были нужны им для роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы, нужные для техники и создания цивилизованных форм жизни», что и изменило «вечный бег геохимических циклов».

Эти гениальные мысли В. И. Вернадского позволили ряду ученых допустить в дальнейшем и такой ход событий в эволюции биосферы, как коэволюцию между человеческим обществом и природной средой, в результате чего и возникнет ноосфера, но это будет происходить благодаря «новым формам действия живого вещества на обмен атомов живого вещества с косной материей». Он считал, что «геологически мы переживаем сейчас выделение в биосфере царства разума, меняющего коренным образом и ее облик, и ее строение, -- ноосферы» [7].

Анализируя представления В. И. Вернадского о ноосфере, Э. В. Гирусов высказал мнение, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноосферу, всеми своими корнями связано с биосферой. Ноосфера -- естественное и необходимое следствие человеческих усилий. Это преобразованная людьми биосфера соответственно познанным и практически освоенным законам ее строения и развития. Рассматривая такое развитие биосферы в ноосферу с позиций системного подхода, можно заключить, что ноосфера -- это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек». Становление ноосферы, по В. И. Вернадскому, -- процесс длительный, но ряд ученых полагают, что человечество уже вступило в период ноосферы, хотя многие считают, что пока об этом говорить рано, так как то, что сейчас происходит во взаимодействии человека и природы, трудно увязать с наступлением эпохи разума. Тем не менее, прогресс человеческого разума и научной мысли ноосферы налицо: они вышли уже за пределы биосферы Земли, в Космос и глубины литосферы (сверхглубокая Кольская скважина). По мнению многих ученых -- ноосфера в будущем станет особой областью Солнечной системы. «Биосфера перейдет, так или иначе, рано или поздно в ноосферу. На определенном этапе развития человек вынужден взять на себя ответственность за дальнейшую эволюцию планеты, иначе у него не будет будущего», -- утверждал В. И. Вернадский [5].

Эволюционная теория и созданная на ее основе концепция биосферы и ноосферы вносят существенный вклад в обоснование идеи универсальной взаимосвязанности всех процессов и демонстрируют необратимый характер эволюционных процессов, четко обозначая в них фактор времени.

Таким образом, можно констатировать, что в современной науке есть необходимые естественнонаучные данные, позволяющие обосновать универсальный характер идеи эволюции. С этих позиций глобальный эволюционизм, включающий в свой состав принципы эволюции и системности, предстает как характеризующий взаимосвязь самоорганизующихся систем разной степени сложности и объясняющий возникновение новых структур [10].

Заключение.

В конце XX столетия возникли принципиально новые тенденции развития научного знания, которые привели к воссозданию общенаучной картины мира как целостной системы научных представлений о природе, человеке и обществе. Эта система представлений, формирующаяся на базе принципов глобального эволюционизма, становится фундаментальной исследовательской программой науки на этапе интенсивного междисциплинарного синтеза знаний. Вбирая в себя совокупность фундаментальных научных результатов и синтезируя их в рамках целостного образа развития Вселенной, живой природы, человека и общества, современная научная картина мира активно взаимодействует с мировоззренческими универсалиями культуры, в контексте которых происходит ее развитие. С одной стороны, она адаптируется к ним, но с другой - она вносит кардинальные изменения в сложившиеся культурные менталитеты.

Как базисные основания современной общенаучной картины мира принципы универсального эволюционизма демонстрируют свою ценность именно сейчас, когда наука перешла к изучению нового типа объектов - саморазвивающихся (в отличие от простых и саморегулирующихся систем, исследуемых на предшествующих этапах функционирования науки). Саморазвивающиеся объекты характеризуются иерархией уровней и появлением по мере развития все новых уровней, которые воздействуют на ранее сложившиеся и видоизменяют их. Включив в орбиту исследования новый тип объектов, наука вынуждена искать и новые основания их анализа. С этих позиций общенаучная картина мира, базирующаяся на принципах универсального эволюционизма, выступает глобальной исследовательской программой, которая определяет стратегию исследования такого рода объектов. Причем эта стратегия исследования реализуется как на дисциплинарном, так и на междисциплинарном уровнях.

Список использованной литературы.

1. Вернадский В.И. Начало и вечность жизни. // Вернадский В.И. Начало и вечность жизни./Сост., вступ. ст., коммент. М.С. Бастраковой, И.И. Мочалова, В.С. Неаполитанской. - М. Сов. Россия, 1989 г.

2. Витол Э.А. Научная картина мира и исследование будущего// Credo New №3 2007

3. Гут А.Г., Стейнхардт П.Дж. Раздувающаяся Вселенная// В мире науки. №7, 1984 г.

4. Еремеева А.И. Астрономическая картина мира и ее творцы. М., 1985 г.

5. Коробкин В.И., Передельсикй Л.В. Экология // Ростов н/Д: изд-во «Феникс», 2003 г.

6. Лавриненко В.Н., Ратников В.П. Концепции современного естествознания//М: изд-во «Юнити», 2003 г.

7. Моисеев Н.Н. Логика универсального эволюционизма и кооперативность//Вопросы философии. №8 1989 г.

8. Моисеев Н.Н. Стратегия разума//Знание - сила. 1986. №10.

9. Силк Дж. Большой взрыв: рождение и эволюция Вселенной. М., 1982 г.

10. Степин В.С., Кузнецова Л.Ф. Научная картина мира в культуре техногенной цивилизации. М., 1994 г.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать