Характеристика общих свойств микроорганизмов
ля определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав.

Расщепление белка на его составные части достигается с помощью гидролиза - длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз). Наиболее часто применяется кипячение при 110 градусах Цельсия с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего - хроматографию.

Главным частью разделенных гидролизатов оказываются аминокислоты. Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% - в костях и сухожилиях и около 10% - в коже.

Но наиболее важными белками всех организмов являются ферменты, которые, холя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций.

21. Характеристика форм покоя у бактерий.

Хорошо известно, что при попадании в неблагоприятные условия, многие бактерии способны переходить в покоящееся состояние. Это состояние характеризуется резким снижением метаболической, активности и полным» отсутствием деления. Ранее покоящееся состояние микроорганизмов связывали только со специализированными формами (спорами и цистами), образуемыми ограниченным числом бактерий. Однако сейчас становится ясно, что многие неспорулирующие; бактерии, в том числе и патогенные микроорганизмы, в определенных условиях могут переходить в покоящееся состояние, оставаясь при этом жизнеспособными. Под. покоящимся состоянием' мы понимаем такое, обратимое состояние бактериальной клетки, при котором уровень метаболической активности значительно снижен, а клетка может существовать в таком состоянии без деления длительное время.Такие покоящиеся клетки, как правило, изменяют свою форму, утолщают клеточную стенку и становятся менее чувствительными:к агрессивным внешним воздействиям. И; хотя обычные микробиологические: методы зачастую не могут выявить микроорганизмы, находящиеся в покоящемся состоянии, такие бактерии при наступлении благоприятных условий способны продолжить рост.

До недавнего времени существование покоящегося состояния для микобактерий in vitro или in vivo не было установлено, хотя для ряда других неспорулирующих бактерий переход в покоящееся состояние экспериментально установлен.

Основные признаки анабиотического или покоящегося состояния: 1) отсутствие или предельно заторможенный метаболизм, 2) сохранение структуры в течение продолжительного времени, 3) отсутствие в жидкой фазе заметных количеств свободной воды как непрерывной среды, 4) повышенная устойчивость против экстремальных факторов неделящееся, 5) способность восстанавливать процессы жизнедеятельности.

Очевидно, что переход в покоящееся состояние может происходить под влиянием различных факторов и наряду с универсальными чертами обладать какими-то особенностями и уникальными механизмами регуляции.

Кейлин объединил под названием гипобиоз любое неактивное неделящееся состояние жизнеспособного организма. В свою очередь, гипобиоз включает гипометаболизм и аметаболизи (или латентную жизнь). Гипометаболизм характеризуется крайне низкими, но все же измеряемыми, метаболическими активностями, примером его может служить зимняя спячка животных. Аметаболизм - полное отсутствие какого-либо метаболизма, например, в спорах.

Для бактерий выделяют конститутивное (эндогенное) и экзогенное покоящиеся состояния . Специализированные покоящиеся формы микроорганизмов, такие как споры и цисты, относятся к первому состоянию. Экзогенное состояние покоя наступает под действием неблагоприятных факторов, при этом вегетативные неспорулирующие бактерии могут переходить в неактивное состояние.

22. Характеристика водорастворимых витаминов

Тиамин (витамин В,)

Рибофлавин (витамин В2)

Пантотеновая кислота (витамин В3)

Никотиновая кислота (витамин В5, РР)

Пиридоксин (витамин В6)

Цианкобаламин (витамин В12)

Пангамовая кислота (витамин В15)

Аскорбиновая кислота (витамин С)

Цитрин (витамин Р)

Биотин (витамин Н)

Парааминобензойная кислота Фолиевая кислота

Инозит S-Метилметионин (витамин U)

Характерным для этой группы витаминов является хорошая растворимость в воде и нерастворимость в жирах и органических растворителях.

Как правило, витамины, растворимые в воде, содержатся в продуктах растительного происхождения; большинство из них в своем составе содержит азот. В отличие от жирорастворимых вита-минов они не накапливаются в животном организме и проявляют свое биологическое действие, входя в состав ферментов.

Витамин В, (тиамин) является первым витамином, хими-ческий состав которого был подробно изучен. Название "тиамин" он получил благодаря наличию в его молекуле серы и азота:

Отсутствие в пище витамина В, вызывает тяжелое заболевание полиневрит, или бери-бери, распространенное в странах, где ос-новным продуктом питания населения служит полированный рис.

По химической природе витамин В2 представляет собой про-изводное азотистого основания -- изоаллоксазина, связанное с остатком спирта -- рибитола:

При отсутствии витамина В2 у животных наблюдается задерж-ка роста, у человека -- выпадение волос. Характерным признаком авитаминоза В2 является заболевание глаз, сопровождающееся вас-куляризаиией роговицы (прорастание кровеносными сосудами). За-тем происходит воспаление роговицы и помутнение хрусталика.

Витамин В3 (пантотеновая кислота). При изучении условий, необходимых для роста дрожжей, в рисовых отрубях было открыто вещество, которое оказалось фактором роста. Оно было названо пантотеновой кислотой (от греч. pamothen -- везде присутствую-щий). Такое название витамин В3 получил за свое широкое распро-странение в природе.

Отсутствие пантотеновой кислоты в пище вызывает ряд расстройств в организме человека: нарушается деятельность сер-дца, нервной системы, почек, пищевого канала, развиваются дерматиты, обесцвечиваются волосы, снижается аппетит и т. д.

Витамин В5, РР (никотиновая кислота).

Биологическое значение витамина РР заключается'в том, что он является составной частью коферментов НАД и НАДФ. После-дние входят в состав многих дегидрогеназ -- ферментов, катализи-рующих реакции биологического окисления. Эту функцию фермен-ты (их известно около 100) выполняют благодаря наличию в соста-ве их молекул витамина РР, способного обратимо присоединять атомы водорода.

Витамин В6 (пиридоксин).

Биологической активностью обладают пиридоксаль и пири-доксамин, образующиеся из пиридоксола, который в связи с этим можно рассматривать скорее как провитамин В6.

В организме пиридоксаль и пиридоксамин легко превращаются в фосфорилированную форму, образуя пиридоксальфосфат и пи-ридоксаминфосфат:

Биологическая роль витамина В6 состоит в том, что он явля-ется коферментом так называемых трансаминаз или аминотранс-фераз. Это ферменты, участвующие в белковом обмене, в реакци-ях превращений а-аминокислот.

Витамин В12 (цианкобаламин).

Следует подчеркнуть, что цианкобаламин -- единственный известный в настоящее время витамин, содержащий в" своей моле-куле металл и практически не образующийся ни в растениях, ни в тканях животных.

Витамин В12 синтезируется главным образом микроорганизма-ми, в том числе обитающими в кишках человека. Очень богаты этим витамином стоячие и сточные воды, почва, ил. Живущие в них ана-эробные бактерии отличаются высоким содержанием витамина В12.

Витамин Ви (пангамовая кислота) принадлежит к числу недавно открытых витаминов. По химическому строению пангамо-вая кислота представляет собой эфир D-глюконовой и диметила-миноуксусной кислот:

Витамин С (аскорбиновая кислота). По своему химическому строению аскорбиновая кислота близка к углеводам гексозам.

23. Характеристика жирорастворимых витаминов. Их значение.

Ретинолы и каротиноиды (витамины группы А)

Кальциферолы (витамины группы D)

Токоферолы (витамины группы Е)

Филохиноны (витамины группы К)

Жирорастворимые витамины нерастворимы в воде, но раство-ряются в органических растворителях. Они термостабильны, устой-чивы к изменению рН среды. Особенностью всех жирорастворимых витаминов является их способность всасываться в кишках только в присутствии жиров, а также иногда накапливаться в организме в больших количествах, вызывая гипервитаминозы.

Жирорастворимые витамины выполняют ряд функций: спо-собствуют формированию, росту и развитию эмбрионов, образова-нию и регенерации костной и эпителиальной тканей, свертыва-нию крови.

С химической точки зрения они имеют.одну общую особенность: в состав их молекулы входят строительные блоки изопренового типа, что наиболее ярко выражено в молекулах витаминов А, Е и К, кото-рые составлены из изопреновых единиц

Витамин А содержится только в животных тканях. Растения лишены этого витамина, однако они содержат группу веществ, которые в организме млекопитающих служат предшественниками витамина А -- каротиноиды. Они довольно широко распространены в природе. Каротинами богат стручковый перец, красная и кормо-вая морковь, зеленый клевер, абрикосы.

Различают а-, р- и у- каротины, среди которых наиболее ценны-ми в биологическом отношении являются Р-каротины.

В группу витамина А входит несколько витаминов, основным из которых является витамин А, (ретинол):

Витамин D. Известно несколько витаминов группы D (D2, D3, D4, D5, D6, D7), имеющих сходное строение. Наибольшей био-логической активностью обладают витамины D2 (эргокальциферол) и D3 (холекальциферол). Витамины группы D содержатся главным образом в организме человека и животных.

В последнее время получено много данных, свидетельствую-щих о том, что функция витамина D не ограничивается только регулированием обмена кальция и фосфора, а более многогран-на. Витамин D активирует деятельность фермента щелочной фос-фатазы в очагах окостенения и тем самым способствует образо-ванию костной ткани.

Витамин D оказывает стимулирующее действие на синтез бел-ка, связывающего кальций, и ДНК-зависимый синтез РНК, что положительно отражается на биосинтезе белков-переносчиков, от-ветственных за всасывание кальция. Он способствует реабсорбции фосфатов, аминокислот и ионов Са2+ из первичной мочи в плазму крови, усиливает реакции окисления углеводов, пировиноградной кислоты, а также ускоряет реакции цикла трикарбоновых кислот.

Витамин Е представлен целой группой витаминов, содер-жащихся в больших количествах в растительных маслах и называе-мых токоферолами. Отсутствие этих витаминов в пище отрицатель-но сказывается на способности организма к размножению. Поэто-му витамин Е называется также антистерильным витамином, или витамином размножения.

Наиболее высокой биологи-ческой активностью обладает а-токоферол следующего строения:

а-Токоферол -- триметилгидрохинон, соединенный с остатком спирта фитола. В настоящее время известно несколько витаминов группы К. Все они обладают сходной структурой и общим названием -- филлохиноны. Наиболее активным из этой группы является вита-мин К,, выделенный из люцерны:

24. Особенности строения и значение нуклеиновых кислот

Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту :

В молекуле ДНК углевод представлен дезоксирибозой, а в молекуле РНК - рибозой, отсюда их названия: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты. Кроме того, они содержат фосфорную кислоту, по два пуриновых и по два пиримидиновых основания; различия только в пиримидиновых основаниях: в ДНК содержится тимин, а в РНК - урацил. В составе ДНК и РНК открыты так называемые минорные (экзотические) азотистые основания (строение некоторых из них приводится далее).

Углеводы (рибоза и дезоксирибоза) в молекулах ДНК и РНК находятся в в-D-рибофуранозной форме:

В составе некоторых фаговых ДНК обнаружена молекула глюкозы, которая соединяется гликозидной связью с 5-оксиметилцитозином.

Основу структуры пуриновых и пиримидиновых оснований составляют два ароматических гетероциклических соединения - пиримидин и пурин :

Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола.

В составе нуклеиновых кислот встречаются три главных пиримидиновых основания: цитозин, урацил и тимин.

Помимо главных пиримидиновых оснований, в составе нуклеиновых кислот открыты минорные пиримидиновые основания, 5-метил- и 5-окси-метилцитозин, дигидроурацил, псевдоурацил, 1-метилурацил, оротовая кислота, 5-карбоксиурацил, 4-тиоурацил и др. Забегая несколько вперед, укажем, что только для тРНК список минорных оснований приближается к 50. На долю минорных оснований приходится до 10% всех нуклеотидов тРНК, что имеет, очевидно, важный физиологический смысл (защита молекулы РНК от действия гидролитических ферментов). Структурные формулы ряда минорных пиримидиновых оснований представлены в форме нуклеозидов - соединений с углеводным компонентом:

Два пуриновых основания, постоянно встречающихся в гидролизатах нуклеиновых кислот, имеют следующее строение:

К минорным нуклеозидам пуринового ряда, обнаруживаемым в составе ДНК и РНК, относятся инозин, N6-метиладенозин, N2-метилгуанозин, ксантин, гипоксантин, 7-метилгуанозин и др.

Одним из важных свойств свободных азотистых оснований (содержащих оксигруппы) является возможность их существования в двух таутомерных формах, в частности лактим- и лактамной формах, в зависимости от значения рН среды: при рН 7,0 они представлены в лактамной форме, при снижении величины рН - в лактимной форме. Таутомерные превращения можно представить на примере урацила.

Оказалось, что в составе природных нуклеиновых кислот все оксипроиз-водные пуринов и пиримидинов находятся в лактамной форме.

О локализации и количественном содержании нуклеиновых кислот в клетках получены определенные данные. Доказано, что количественное содержание ДНК в клетках одного и того же организма отличается удивительным постоянством и исчисляется несколькими пикограммами, однако в клетках разных видов живых организмов имеются существенные количественные различия в содержании ДНК. Хорошо известно также, что ДНК преимущественно сосредоточена в ядре, а в митохондриях и хлоро-пластах содержится только небольшой процент клеточной ДНК. О количестве РНК нет точных данных, поскольку содержание ее в разных клетках в значительной степени определяется интенсивностью синтеза белка. На долю РНК приходится около 5-10% от общей массы клетки. Современная классификация различных типов клеточной РНК основывается на данных топографии, функции и молекулярной массы. Выделяют три главных вида РНК: матричную (информационную) - мРНК, которая составляет 2-3% от всей клеточной РНК; рибосомную - рРНК, составляющую 80-85% и транспортную - тРНК, которой около 16%. Эти 3 вида различаются нуклеотид-ным составом и функциями.

Матричная РНК (мРНК) синтезируется в ядре на матрице ДНК, затем поступает в рибосому, выполняя матричную функцию при синтезе белка. По предположению акад. А.С. Спирина, часто мРНК при поступлении из ядра в цитоплазму образует со специфическими РНК-свя-зывающими белками комплексы - так называемые информосомы, способные к обратимой диссоциации. Информосомы рассматриваются как транспортная форма мРНК, способствующая образованию полирибосом в цитоплазме. Транспортные РНК (тРНК) имеют небольшую молекулярную массу и содержатся в растворимой фракции цитоплазмы, выполняя функцию переноса аминокислот к месту белкового синтеза - рибосоме. Рибосом-ные РНК (рРНК), как видно из данных табл. 3.1, имеют разную и значительно большую молекулярную массу. Они локализуются в двух субчастицах рибосом 50S и 30S у Е.coli и 60S и 40S в клетках животных (табл. 3.2).

Субчастица 60S содержит три разных рРНК (5S, 5,8S и 28S рРНК), в то время как субчастица 40S - одну молекулу 18S рPHK. Детально роль рРНК в белковом синтезе пока не выяснена.

Для понимания ряда особенностей структуры ДНК важное значение имели закономерности состава и количественного содержания азотистых оснований, установленные впервые Э. Чаргаффом. Оказалось, что азотистые основания ДНК обычно варьируют у разных видов организмов, однако почти не претерпевают изменений у одного и того же вида в процессе развития или в зависимости от изменений окружающей среды либо характера питания. Показано также, что ДНК, выделенная из разных тканей одного и того же вида, имеет одинаковый состав азотистых оснований. Полученные количественные соотношения были названы правилами Чар-гаффа. При анализе состава очищенной ДНК, выделенной из разных источников, были сделаны следующие выводы:

1) молярная доля пуринов равна молярной доле пиримидинов:

2) количество аденина и цитозина равно количеству гуанина и тимина:

3) количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина: А = Т и Г = Ц; соответственно

4) существенным для характеристики вида (таксономическое значение) оказался так называемый коэффициент специфичности, отражающий отношение

Это отношение часто выражают в молярных процентах (Г + Ц), или процентах ГЦ-пар. Для животных и большинства растений этот коэффициент ниже 1 (от 0,54 до 0,94), у микроорганизмов он колеблется в значительных пределах (от 0,45 до 2,57).

Литература

1. Прокариотические и эукариотические клетки (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000).

2. Б.Албертс, Д.Брей, Дж.Льюис, М.Рэфф, К.Робертс, Дж.Уотсон. "Молекулярная биология клетки", 2-е издание, "Мир", 1994.

3. С.Бейкер. Камень преткновения.Верна ли теория эволюции? - М., «Протестант», 1992.

4. Гилберт С. Биология развития 3 томам., "Мир", 1993г.

5. Грин Н., Стаут У., Тейлор Д., Биология 3 тома, М, "Мир", 1990г.

6. Дубинин Н.П. Новое в современной генетики М, "Наука", 1989г.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать