Естествознание XX века
p align="left">Если же центральная область звезды будет сжата до величины гравитационного радиуса (для Солнца, например, эта величина равна лишь 3 км, а для Земли -- 0,9 см), то образуется так называемая черная дыра -- сфера, в которой поле тяготения столь велико, что никакое излучение или частицы не могут выйти из этой сферы.

В 1967 году были открыты пульсары -- космические тела, являющиеся источниками радиоизлучения. Это излучение носит импульсный характер, причем импульсы повторяются через очень короткий промежуток времени: от долей секунды до нескольких секунд. Пульсары относят к разряду нейтронных звезд.

В 1963 году были открыты новые астрономические объекты, находящиеся вне пределов нашей галактики и получившие название квазаров. Квазары удаляются от нашей Галактики с огромными скоростями -- 100-200 тыс. км/с. По сумме всех характеристик квазаров предполагается, что они представляют собой ядра особо удаленных от нас галактик, в которых происходят поражающие своей мощью процессы, происхождение которых еще недостаточно ясно.

В заключение необходимо выделить основные проблемы современной физики. Об этих проблемах говорит академик В.Л. Гинзбург в своей статье «О перспективах развития физики и астрофизики в конце XX в.».

Макрофизика

Управляемый термоядерный синтез.

Высокотемпературная сверхпроводимость.

Новые вещества (проблема создания металлического водорода и некоторых других «необычных» веществ).

Поведение вещества в сверхсильных магнитных полях.

Изучение очень больших молекул. Жидкие кристаллы.

Разеры, гразеры и лазеры новых типов.

Нелинейные явления. Солитоны.

Сверхтяжелые элементы.

Микрофизика

Кварки и глюоны. Квантовая хромодинамика.

Единая теория слабого и электромагнитного взаимодействия.

«Великое объединение». Распад протона. Масса нейтрино. Суперобъединение.

Астрофизика

Экспериментальная проверка и граница применимости общей теории относительности.

Гравитационные волны.

Космологическая проблема. Связь космологии с физикой высоких энергий.

Нейтронные звезды и пульсары. Физика «черных дыр».

Квазары и ядра галактик. Образование галактик.

Происхождение космических лучей и космического гамма- и рентгеновского излучения.

Нейтринная астрономия.

Электроника

Ядерная физика и астрофизика достигли в XX веке огромных успехов в изучении окружающего мира, но наиболее значительные практические успехи были достигнуты в области электроники.

Электронику можно определить как науку о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газозарядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Развитие электроники начинается в конце XIX -- начале XX века. Электромагнитные волны, как известно, были изучены Герцем в 1886 г. Теория Максвелла объяснила их природу и свойства. В конце прошлого века электромагнитные волны были использованы для беспроволочной связи. Впервые это сделал русский инженер А.С. Попов в 1895 году. Примерно через год этот опыт повторил итальянский техник и предприниматель Г. Маркони. Он первым попытался послать радиосигналы через Атлантический океан, которые действительно были приняты. Это означало, что в атмосфере должно существовать какое-то подобие зеркала, отражающего радиоволны обратно на землю.

В 20-х годах Э. Эпплтон занялся изучением этого вопроса. Так была открыта ионосфера. Открытие Эпплтона легло в основу радиолокационного прибора, созданного в ходе второй мировой войны.

Использование коротких волн давало возможность направления их по точно определенным лучам, что было использовано в радиолокации. Непосредственным стимулом для ее развития явилась необходимость предупреждения воздушного нападения во время второй мировой войны. В дальнейшем радиолокация применялась для нахождения пути, съемки карт с воздуха, управления полетом самолетов, а также полетом снарядов и ракет. Методы радиолокации были использованы также для целей астрономии, в частности, для проверки расстояния до Луны. Возник также новый вид астрономии -- радиоастрономия.

Настоящую революцию в области связи вызвало создание электронной лампы, которая делает возможным усиление и регенерацию волн. Электронные лампы нашли широкое применение главным образом в радиоаппаратуре и ЭВМ первого поколения.

Для целей войны было необходимо создать аппараты, которые бы могли выполнять сложные расчеты траектории снарядов и ракет. Это позволило к концу войны создать первые электронные счетные машины.

Предпосылки для создания быстродействующих счетных машин сложились к 40-м годам нашего века. К этому времени был создан соответствующий теоретический базис. В конце 30-х годов английский математик А. Тьюринг показал, что различные проблемы могут быть решены с помощью машин, если эти проблемы или задачи могут быть выражены посредством конечного числа операций.

В 1940 году американский математик Норберт Виннер предложил использовать в вычислительных машинах не десятичную систему счисления, а двоичную. В этом случае любое число можно записать только с помощью двух цифр -- 1 и 0. Двоичная система счисления и бинарная логика, разработанная Джоржем Булем в XIX веке, играют ключевую роль в вычислительной технике.

В конце 30-х годов в вычислительных машинах начинают применяться электронные элементы, что позволило повысить быстродействие машин на три порядка. Первая ЭВМ, использующая элементы на электровакуумных триодах, была создана в Пенсильванском университете в 1945 году под руководством Дж. Маучли.

Ее назвали ЭНИАК. Первая ЭВМ была очень громоздкой. Она состояла из 18 тысяч электронных ламп, 1500 реле и занимала зал длиной 30 метров. За одну секунду этот гигант мог складывать или вычитать пять тысяч чисел. Но машина часто простаивала из-за того, что перегорали лампы, выходили из строя реле, много времени тратилось на подготовительные работы. Операторы, обслуживающие ЭНИАК, отставали от него.

В 1946 году американский математик и физик Джон фон Нейман выдвинул и обосновал принципы создания новых ЭВМ. В них предполагался переход на двоичную систему счисления, а также ввод и хранение программы в памяти ЭВМ аналогично данным. Идеи Неймана и постройка под его руководством новой ЭВМ -- ЭДВАК -- оказали существенное влияние на дальнейшее развитие вычислительной техники.

Прогресс вычислительной техники в 40-50-е годы был обусловлен появлением ряда работ по численному анализу. В 1944 году была опубликована книга фон Неймана и О. Моргенштерна «Теория игр и оптимальное поведение», а в 1948 году вышла книга Н. Виннера «Кибернетика, или Управление и связь в животном и машине». Эти работы оказались очень продуктивными для дальнейшего развития ЭВМ. На основе идей Виннера удалось создать общую теорию информации и связи, применимую в самых различных областях -- от физики до биологии и языкознания. В развитии теории информации сыграли важную роль работы советских ученых А.Н. Колмогорова и А.Я. Хинчина.

В СССР разработка первой отечественной ЭВМ с запоминаемой программой началась в 1947 году в Киеве под руководством академика С.Я. Лебедева (1902-1974). Серийное производство ЭВМ началось практически одновременно в СССР и США в 1951-1952 годах.

Парк ЭВМ увеличивался очень высокими темпами. Если в 1952-1953 годах их было несколько десятков, то в 1965 году во всем мире использовалось уже около 40 тыс. ЭВМ, а в 1970 году -- свыше 100 тыс.

В развитии вычислительной техники можно выделить несколько этапов («поколения» ЭВМ).

К первому поколению ЭВМ (1950-1958 гг.) относятся ламповые вычислительные машины. Они были громоздки и малонадежны, отличались высокой стоимостью и большим энергопотреблением, работали в однопрограммном режиме, обладали низким быстродействием.

Ко второму поколению относятся полупроводниковые ЭВМ (1959-1967 гг.), в которых электронные лампы были заменены транзисторами. В ЭВМ второго поколения были применены новые принципы организации и работы машины: совмещение операций ввода и вывода данных с вычислениями на центральном процессоре, повышение быстродействия процессора за счет параллельного во времени выполнения частей 1-2 команд.

Параллельно с техническим совершенствованием ЭВМ шла работа по созданию универсальных языков, пригодных для широкого класса машин. В 60-х годах были разработаны и получили широкое распространение универсальные языки АЛГОЛ, КОБОЛ, ФОРТРАН и др.

В середине 60-х годов появились так называемые интегральные схемы: на миниатюрной монокристаллической пластинке полупроводника размещалось значительное количество логических элементов.

К третьему поколению (середина 60-х годов) относятся машины, построенные на интегральных схемах. Это программно-совместимые ЭВМ, отличающиеся большой производительностью, максимальным объемом оперативной памяти, составом периферийного оборудования.

Новый этап использования ЭВМ связан с появлением быстродействующих и весьма емких запоминающих устройств. Одновременно была решена задача быстрого поиска данных. При создании и эксплуатации ЭВМ первых двух поколений практически не решался вопрос обеспечения удаленного доступа к ЭВМ. Появление баз данных и резкое повышение мощности вычислительных ресурсов поставили на повестку дня задачу обеспечения одновременного доступа к ним различных потребителей, находящихся географически в самых разных точках. Для потребителя это означало возможность обращения к любой ЭВМ и соответствующей базе данных независимо от места расположения этой ЭВМ. Новые возможности хранения, быстрого поиска и передачи информации означают революцию в системах накопления и доступа к освоенным знаниям. Наступает важный в жизни человечества этап «безбумажной информатики»: информация поступает к специалистам прямо на рабочее место -- экран дисплея.

Созданные в начале 60-х годов первые образцы микросхем содержали тысячи активных элементов (диодов, транзисторов) в одном кубическом сантиметре. С каждым последующим десятилетием количество элементов увеличивалось примерно в 10 раз.

В начале 80-х годов стали выпускать микросхемы, содержащие до 100 тысяч элементов в одном кубическом сантиметре, а во второй половине 80-х годов это число перевалило за миллион. Вслед за интегральными схемами (ИС) появились большие интегральные схемы (БИС) и сверхбольшие интегральные схемы (СБИС).

Особенно активно интегральные схемы начала разрабатывать и производить американская фирма «Интел». В 1971 году «Интел» создает семейство микропроцессоров 4004 с четырехразрядными порциями информации. Процессор стоил 200 долларов, в нем 2,3 тыс. транзисторов. В 1976 г. создан 8-разрядный микропроцессор 8080. Было предложено создать на его основе персональный компьютер.

1985 год -- 32-разрядный процессор 1386, в котором 275 тыс. транзисторов, быстродействие -- 5 млн операций в секунду.

1989 год -- микропроцессор I486; содержит 1,2 млн транзисторов, быстродействие -- 20 MIPS.

1993 год -- микропроцессор Pentium; 3,1 млн транзисторов; производительность 90 MIPS.

1995 год -- Pentium-Pro, 5,5 млн транзисторов, производительность 300 MIPS.

Этот фантастический прогресс -- результат глубоких исследований и миллиардных капвложений.

Один из путей развития электроники -- создание микросхем на основе белковых структур. Вот первые результаты: японская фирма «Сантори ЛТД» создала первые образцы так называемых биочипов -- микросхем, выполняющих функции электронной памяти на основе искусственно выращенных белковых структур. По оценкам японских специалистов в ближайшем будущем емкость памяти микросхем на биочипах превысит емкость памяти микросхем, выполненных на полупроводниковых кристаллах, в 109 (в миллиард) раз.

Сравнивая современный персональный компьютер с громоздкой ЭВМ первого поколения, мы видим, как высоко мы поднялись. Сравнивая тот же компьютер с мозгом, мы понимаем, что до уровня совершенства, которого путем длительной эволюции достигла природа, нам пока еще весьма далеко.

Нейронные сети чрезвычайно компактны: 1011 нейронов мозга уместились в объеме 1,5 литра. Сеть из 1011 искусственных электронных нейронов, выполненная на обладающих самой высокой степенью интеграции микросхемах, получилась бы величиной с жилой дом. Причем этот гигантский искусственный мозг был бы весьма примитивен по сравнению не только с человеческим мозгом, но и с мозгом животных. Мозг курицы сравнительно примитивен. Ее интеллект не способен усвоить даже простые арифметические действия сложения, вычитания или умножения. Зато курица находит зерно среди травы, мелких камешков, разного мусора. Подобную операцию пока неспособно выполнить созданное для распознавания зрительных образов электронное устройство.

В последние десятилетия ведутся активные исследования по проблеме искусственного интеллекта. Когда работа по моделированию только начиналась, казалось, что достаточно увеличить быстродействие машины и объем памяти -- и проблема будет решена, но потом стало ясно, что проблема не сводится к перебору множества вариантов. Тогда встала чисто теоретическая проблема: а что такое мышление? Ответить на этот вопрос не так просто. Мышление не сводится к решению задач. Это еще и творчество, целеполагание, умение задачу сформулировать. Поэтому если даже мы сумеем смоделировать работу мозга, неизбежно встает вопрос: какую программу в этот искусственный мозг надо закладывать? Если программа задается человеком, то искусственный интеллект -- это просто орудие для усиления человеческого мышления. Так, бинокль усиливает возможности наших глаз, но он не может видеть. Если искусственный интеллект сам создает себе программы, т. е. воспроизводит одну из важнейших функций интеллекта -- творчество, тогда возникает проблема цели «ради чего»? Цели человеческой деятельности и мышления задает общество, в котором живет человек. Следовательно, искусственный интеллект необходимо «социализировать», ввести в социум, сделать его реальным членом общества, наделить чувствами, эмоциями, волей. Но где гарантии, что цели искусственного интеллекта и цели общества совпадут? Все эти вопросы показывают, что проблема искусственного интеллекта -- это не только техническая проблема, но и проблема философская, гуманитарная. Для ее решения необходимо объединить усилия ученых различных направлений.

Химия

Химия -- наука, теснейшим образом связанная с физикой. Она рассматривает главным образом превращения веществ, изучает элементы (простейшие вещества, образуемые одинаковыми атомами) и сложные вещества, состоящие из молекул (сочетаний различных атомов).

Во второй половине XVIII и начале XIX века в работах ученых преобладало изучение и описание свойств химических элементов и их соединений. Кислородная теория Лавуазье (1743-1794) и атомная теория Дальтона (1766-1844) заложили основы теоретической химии. Открытия, вызванные атомно-молекулярным учением, начали играть существенную роль в производственной практике.

Атомистические представления о строении вещества породили много теоретических проблем. Необходимо было выяснить, что происходит с атомами, образующими молекулярные структуры? Сохраняют ли атомы свои свойства в составе молекул и как они взаимодействуют друг с другом? Действительно ли атом прост и неделим? Эти и другие вопросы необходимо было решить.

Без атомной теории нельзя было создать учение об ионах, а без понимания ионного состояния материи нельзя было разрабатывать теорию электролитической диссоциации, а без нее -- понять истинный смысл аналитических реакций, а затем понять роль иона как комплексообразователя и т. д.

Разработка проблем органической химии привела к созданию учения о замещении, теории типов, учения о гомологии и валентности. Открытие изомерии выдвинуло важнейшую задачу -- изучить зависимость физико-химических свойств соединений от их состава и строения. Исследования изомеров наглядно показали, что физические и химические свойства веществ зависят не только от расположения атомов в молекулах.

К середине XIX века на основе учения о химическом соединении и химических элементах, на базе атомно-молекулярной теории оказалось возможным создать теорию химического строения и открыть периодический закон химических элементов. Во второй половине XIX века происходит постепенное превращение химии из описательной науки, изучающей химические элементы, состав и свойства их соединений, в теоретическую науку, исследующую причины и механизм превращения веществ. Стало возможным управлять химическим процессом, преобразовывая вещества, природные и синтетические, в полезные продукты. К концу XIX века были получены и изучены десятки тысяч новых органических и неорганических веществ. Открыты фундаментальные законы и созданы обобщающие теории. Достижения химической науки внедрялись в промышленность. Были построены и хорошо оборудованы химические лаборатории и физико-химические институты.

Химия принадлежит к той категории наук, которые своими практическими успехами способствовали повышению благосостояния человечества. В настоящее время развитие химии имеет ряд характерных черт. Во-первых, это размывание границ между основными разделами химии. Например, ныне можно назвать тысячи соединений, которые нельзя однозначно причислить к органическим или неорганическим. Во-вторых, развитие исследований на стыке физики и химии породило большое число специфических работ, которые в итоге сформировались в самостоятельные научные дисциплины. Достаточно назвать, например, термохимию, электрохимию, радиохимию и т. д. В то же время «расщепление >> химии шло и по объектам исследования. На этом направлении возникли дисциплины, изучающие:

1) отдельные совокупности химических элементов (химия легких элементов, редкоземельных элементов).

2) отдельные элементы (например, химия фтора, фосфора и кремния).

3) отдельные классы соединений (химия гидридов, полупроводников).

4) химия особых групп соединений, куда относится элементарная и координационная химия.

В-третьих, для химии партнерами для интеграции явилась биология, геология, космология, что привело к рождению биохимии, геохимии и т. д. Произошел процесс «гибридизации».

Одной из важных задач современной химии является предсказание условий синтеза веществ с заранее заданными свойствами и определение их физических и химических параметров.

Охарактеризуем основные направления современной химии. Химию принято подразделять на пять разделов: неорганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.

Основными задачами неорганической химии являются: изучение строения соединений, установление связи строения со свойствами и реакционной способностью. Также разрабатываются методы синтеза и глубокой очистки веществ. Большое внимание уделяется кинетике и механизму неорганических реакций, их каталитическому ускорению и замедлению. Для синтезов все чаще применяют методы физического воздействия: сверхвысокие температуры и давления, ионизирующее излучение, ультразвук, магнитные поля. Многие процессы проходят в условиях горения или низкотемпературной плазмы. Химические реакции часто сочетают с получением волокнистых, слоистых и монокристаллических материалов, с изготовлением электронных схем.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать