G-белки и их функция

G-белки и их функция

30

Содержание

  • Введение 2
    • Из истории открытия С-белков 8
    • Структура и свойства 8
    • Связь с мембраной 9
    • Стуктурно-функциональная организация G-белков 9
    • Классификация по чувствительности к токеинам 10
    • Сопряжение с эффекторными системами 10
    • Регуляция активности G-белков 11
    • Аденилатциклаза 12
    • Фосфолипазы 13
    • Протеинкиназы 14
    • Фосфодиэстеразы 16
    • Аденилатциклазная система 17
    • Влияние бактериальных токсинов на активность аденилатциклазы (АДФ-рибозилирование G-белков) 20
    • Инозитолфосфатная система 21
    • Участие белка кальмодулина в инозитолфосфатной передаче сигнала 22
    • Саморегуляция системы 23
    • б-субъединица: общие свойства 23
    • в и г субъединицы: общая характеристика 24
    • G-белки: вг-субъединицы 25
    • ГТФ-связывающие белки образуют два основных семейства G-белков и низкомолекулярных ГТФ-связывающих белков 28
    • Литература 30
Введение

Сигнальные G-белки являются универсальными посредниками при передаче гормональных сигналов от рецепторов клеточной мембраны к эффекторным белкам, вызывающим конечный клеточный ответ. Когда семидоменная рецепторная молекула, локализованная в мембране сенсорной клетки, активируется какими-то изменениями во внешней среде, она претерпевает конформационные изменения. Последние детектируются

G-белками связанными с мембраной, которые, в свою очередь, активируют эффекторные молекулы в мембране. Часто это приводит к выделению вторичных мессенджеров в цитозоль.

Они являются объектом интенсивного изучения в связи с их участием во многих важных физиологических процессах. G-белки, участвующие в передаче сигнала, являются членами большого надсемейства гуанин-связывающих белков. G-белки - это прецизионные регуляторы, включающие или выключающие активность других молекул.

Примерно 80% первичных мессенджеров (гормоны, нейротрансмиттеры, нейромодуляторы) взаимодействуют со специфическими рецепторами, которые связаны с эффекторами через G-белки.

G-белки - белки, связывающие гуанозиновые нуклеотиды. G-белки, ассоциированные с рецепторами, связаны с мембраной. В неактивном состоянии они связаны с GDР. При связывании рецептора с лигандом ГДФ замещается на ГТФ, в результате чего происходит активация. Процесс этот сравнительно медленный, протекающий в течение секунд - десятков секунд.

G-белки биологических мембран имеют гетеротримерную структуру. Они состоят из большой б-субъединиц (около 45 килодальтон - кДа), а также меньших в и г-субъединиц, б-субъединица обладает ГТФ-азной активностью, в неактивной (выключенной) форме она связывает молекулу ГДФ на активном сайте. Субъединицы в и г связаны между собой, и в физиологических условиях не могут быть диссоциированы. В неактивном состоянии вг-комплекс непрочно связан с б-субъединицей. г-субъединица связана с цитоплазматическим листком биологической мембраны геранил-гераниловой цепью (20 атомов углерода в цепи), близкой по структуре к холестерину. б-субъединица также связана с мембраной жирной кислотой с длиной цепи в 14 атомов углерода (миристоевая кислота). Такие связи обеспечивают то, что комплекс G-белка удерживается в плоскости мембраны, но в то же время способен легко двигаться в этой плоскости. Легко себе представить, как весь комплекс G-белка с присоединенным ГДФ перемещается в плоскости мембраны под действием тепловых сил, два семейства белков - гетеротримерные гуанозиннуклеотид связывающие белки (G-белки) и отдаленно родственные им гуанозинтрифосфатазы (ГТФ-азы) при связывании ГТФ могут включаться и активировать последующие компоненты передачи сигнала от поверхности клетки. Малые ГТФ-азы участвуют в контроле фундаментальных свойств клетки - полярности формы и процессов деления и дифференцировки. G-белки обычно регулируют более специализированные сигналы - продукцию вторичных мессенджеров. И те и другие способны гидролизовать GTР и таким образом выключать сигнал.

Поскольку в - и г-субъединицы G-белков чрезвычайно консервативны, G-белки принято различать по их б-субъединицам. Кроме ГТФ-связывающего мотива, каждая последовательность Gальфа содержит как минимум один центр связывания дивалентных катионов, а также сайты ковалентной модификации бактериальными токсинами, катализирующими NAD-зависимые АДФ-рибозилтрансферазные реакции. G-белки, стимулирующие аденилатциклазу (Gs) или участвующие в фототрансдукции (Gt, трансдуцин) служат субстратами для АДФ-рибозилирования, катализируемого холерным токсином по одному из остатков аргинина, что приводит к блокированию деактивации этих белков. Gs, G-белок, ингибирующий аденилатциклазу, (Gi) и G-белок с пока еще неизвестной функцией (Go) АДФ-рибозилируются коклюшным токсином по остатку цистеина, расположенному у С-конца. Эта модификация препятствует взаимодействию между G-белком и рецепторами. Определена последовательность G-белка крысы (Gx), который оказался нечувствительным к коклюшному токсину.

G-белки - это регуляторные белки, связывающие при активации ГТФ. Лучше всего изучены G-белки, стимулирующие и ингибирующие аденилатциклазу (Gs - белки и Gi-белки соответственно). вэ - адренорецепторы, в2 - адренорецепторы и D1 рецепторы сопряжены с белком Gs, и поэтому стимуляция этих рецепторов сопровождается активацией аденилатциклазы и повышением внутриклеточной концентрации цАМФ - классического второго (внутриклеточного) посредника. Конечный ответ в разных клетках различен и зависит от того, что представляет собой эффекторные фрагменты (фермент, ионный канал и пр) б2- адренорецепторы, М2-холинорецепторы и D2-рецепторы сопряжены с белком Gi, и стимуляция этих рецепторов приводит к снижению активности аденилатциклазы и внутриклеточной концентрации цАМФ. Изменения активности ферментов и других внутриклеточных белков и, соответственно, клеточных функций при этом противоположны тем, что наблюдаются при активации белка Gs. б1-адренорецепторы (как и М1-холинорецепторы), видимо, сопряжены с другим, пока еще мало изученным типом G-белка. Этот белок иногда обозначают Gq. Он активирует фосфолипазу С, катализирующую распад мембранных фосфолипидов, в частности - фосфатидилинозитол-4,5-дифосфата до ИЗФ и ДГА. Оба эти вещества являются вторичными посредниками.

Связывание агониста (гормона, нейромедиатора и др.) с соответствующим рецептором приводит к белок-белковому взаимодействию между рецептором и G-белком и ускоряет диссоциацию ГДФ. В результате образуется короткоживущий комплекс агонист - рецептор - G-белок, не связанный ни с каким нуклеотидом. Связывание с этим комплексом молекулы ГТФ снижает сродство рецептора к G-белку, что приводит к диссоциации комплекса и высвобождению рецептора. Потенциально рецептор может активировать большое количество молекул G-белка, обеспечивая, таким образом, высокий коэффициент усиления внеклеточного сигнала на данном этапе. Активированная б-субъединица G-белка диссоциирует от вг-субъединиц и вступает во взаимодействие с соответствующим эффектором, оказывая на него активирующее или ингибирующее воздействие.

б-субъeдиница с присоединенным с ней ГТФ способна взаимодействовать с эффектором в мембране - ферментами, такими, как аденилатциклаза, или, возможно, ионными каналами. Фермент может активироваться или ингибироваться, а ионный канал - открываться или закрываться. Конкретные примеры будут рассмотрены в последующих разделах. Взаимодействие с эффектором, однако, длится до тех пор, пока б - субъединица, являющаяся ГТФазой, удерживает ГТФ. Так что, очень вскоре присоединенный ГТФ гидролизуется до ГДФ. Когда это происходит, б - субъединица снова меняет свою конформацию и теряет способность активировать эффектор. После этого б-ГДФ взаимодействует с вг-комплексом и снова образует тримерный комплекс, завершая, таким образом, цикл. Предполагают также, что комплекс из вг-субъединиц тоже может (прямо или опосредованно) влиять на эффекторные ферменты.

Такими ферментами являются аденилатциклаза, фосфолипаза С. G-белки также регулируют работу К и СаІ+-ионных каналов, К G-белкам относятся полипептид Gs, стимулирующий аденилатциклазу и регулирующий СаІ+-ионные каналы, полипептид Gi, ингибирующий аденилатциклазу, и регулирующий К+-каналы в клетках тканей мозга, Gt, трансдуцин, участвующий в передаче светового сигнала, Golf специфичный белок обонятельных ресничек и др. Все G-белки являются гетеротримерами, состоящими из субъединиц б, в‚ и г в порядке уменьшения молекулярной массы.

Впоследствии ГТФ, связанный с б-субъединицей G-белка, подвергается гидролизу, причем ферментом, катализирующим этот процесс, является сама б-субъединиц. Это приводит к диссоциации б-субъединицы от эффектора и реассоциации комплекса б-ГДФ с вг - субъединицами. Спонтанная активация G-белка, связанного с ГДФ - весьма маловероятный процесс.

Этот же механизм лежит в основе гормональной регуляции фосфоинозитидспецифичной фосфолипазы С и фосфолипаза А2. Кроме того, было показано, что G-белки могут непосредственно активировать ионные каналы.

Лимитирующей стадией процесса восстановления исходного состояния G-белка является скорость диссоциации ГДФ от б-субъединицы G-белка. Скорость диссоциации увеличивается при взаимодействии G-белок-ГДФ с агонистсвязанным рецептором. Связывание ГТФ G-белком приводит, очевидно, к образованию комплекса агонист-рецептор-G-белок. Аналог GТР-СТР-г-S и Мg2+ усиливает диссоциацию б-субъединицы из тримера G-белка. Однако следует заметить, что каталитическая субъединица аденилатциклазы из мембран мозга быка хроматографически соочищается с б - и в-субъединицами Gs-белка и вопрос диссоциации б-субъединиц из тримера G-белка для активации эффектора требует уточнения.

G-белки проявляют значительный полиморфизм. Каждая из форм субъединиц G-белка высокогомологична по структуре, близка по функциям, но отличается молекулярной массой и электрофоретической подвижностью. Особенно широк полиморфизм и наиболее изучен для бs и бi G-белков. Так из мозга человека выделено 11 форм ДНК, ответственных за синтез бs-субъединиц, четыре вида которых клонированы и, предполагается, что они определяют синтез четырех изоформ бs, в мозге человека. Для бi найдены, в основном, три изоформы бi1, бi2, бi3. Молекулярные массы изоформы бs находятся в пределах 42-55 кДа, а бi 39-41 кДа. Распределение молекулярных вариантов бi носит тканеспецифический характер: бi1 представлена, в основном, в мозге, бi2 обнаружена в нервной ткани и в клетках крови, бi3 представлена в периферических тканях и отсутствует в мозге. Распределение генов, кодирующих синтез трех изоформ бi по тканям примерно совпадает в ряду: человека, бык, крыса, мышь. Определение аминокислотной последовательности бi и бs показало, что изоформы бs или бi различаются в области С - и N - концевой последовательности, связывающихся с рецептором или эффектором. Предполагается, что полиморфизм б-субьединиц определяется многообразием рецепторов и их подтипов и разнообразием эффекторных систем.

бi-субъединицы Gi кодируются тремя различными структурными генами. Что касается изоформ б-субъединиц Gs-белков, то пока неясно, кодируются ли изоформы разными структурными генами или это продукт одного гена с последующим внутренним альтернативным сплайсингом исходного РНК-транскрипта, или множественность их результат посттрансляционной модификации. В настоящее время известно 9 структурных генов, кодирующих G-белки и 12 продуктов этих генов.

Из истории открытия С-белков

1. 1971г. - впервые показана необходимость ГТФ для стимуляции аденилатциклазы глюкагоном.

2. 1981г. - выделен белок Gt-трансдуцин, связывающий родопсин с фосфодиэстеразой с ГТФ фоторецепторов.

З. 1983г - выделен ГТФ-связываюший белок Gs, сопрягающий стимулирующие рецепторы с аденилатциклазой.

4. 1985-1988гт - показано, что фосфолипаза С и фосфолипаза А2 регулируются гормонами и нейротрансмиттерами через Gp-белки.

5. В настоящее время G-белки разделены на несколько типов: четыре Gs, три Gi, Go, Gz/x (центральная нервная система и селезенка), Gt (трансдуцин), Golf (обонятельные нейроэпителиальные клетки).

Структура и свойства

1. G-белки - гетеротримеры, в которых б-субъединица непрочно связана с димером в-г.

2. Все известные б-субъединицы (мол. масса - 50кДа) гомологичны, и у большинства из них одинаковые (или очень сходные) b-субъединицы (мол. масса З5кДа) и г-субъединицы (мол. масса 8кДа).

З. б-субъединица определяет специфичность связывания G-белка с рецептором и эффектором, уникальна для каждого G-белка.

4. б-субъединица связывает и гидролизует ГТФ (ГТФ-аза).

5. б-субъединица содержит высоко консервативный домен связывания и гидролиза ГТФ (18 аминокислот из 350-395).

6. Выявлены участки связывания гуаниновых нуклеотидов и участки взаимодействия с рецепторами (С-конец) и вг-димерами (N-конец).

7. Выявлены участки АDР-рибозилирования (аргинин-202) при действии холерного токсина и коклюшного токсина.

Связь с мембраной

G-белки локализованы на внутренней поверхности плазматической мембраны. Первичная структура всех субъединиц G-белков не содержит гидрофобных, пронизывающих мембрану доменов.

1. Ассоциации G-белков с мембраной содействует ацилирование жирнокислотными радикалами. Выявлено два типа липидных модификаций субъединиц G-белков: миристоилирование и изопренилирование белковой цепи.

2. Показано для б-субъединиц Go - и Gi-белков посттрансляционное миристоилирование со стороны N-конца.

З. Для вг-субъединиц также показаны посттрансляционные модификации (ацилирование).

4. Выявлены три последовательные посттрансляционные модификации, ответственные за связывание ras-белков с мембраной.

5. Очищенные б-субъединицы проявляют гидрофильные свойства (без вг - комплекса не могут связываться с искусственными фосфолипидными пузырьками).

Стуктурно-функциональная организация G-белков

G-белки (ГТФ-связывающие белки) - универсальные посредники при передаче сигналов от рецепторов к ферментам клеточной мембраны, катализирующим образование вторичных посредников гормонального сигнала. G-белки - олигомеры, состоящие из б, в и г-субъединиц. Состав димеров вг незначительно различаются в разных тканях, но в пределах одной клетки все G-белки, как правило, имеют одинаковый комплект вг-субъединиц. Поэтому G-белки принято различать по их б-субъединицам. Выявлено 16 генов, кодирующих различные б-субъединицы G-белков. Некоторые из генов имеют более одного белка, вследствие альтернативного сплайсинга РНК.

Каждая а-субъединица в составе G-белка имеет специфические центры:

связывания ГТФ или ГДФ;

взаимодействия с рецептором;

связывания с вг-субъединицами;

фосфорилирования под действием протеинкиназы С;

взаимодействия с ферментом аденилатциклазой или фосфолипазой С.

В структуре G-белков отсутствуют б-спиральные, пронизывающие мембрану домены. G-белки относят к группе "заякоренных" белков.

Классификация по чувствительности к токеинам

1. ХТ (холерный токсин) приводит к постоянной активации аденилатциклазы (подавляя ГТФ-азную активность Аs-субъединицы)

2. КТ (коклюшный токсин) тоже вызывает АDР-рибозилирование б-субъединицы. Однако в этом случае модификация G-белка препятствует его взаимодействию с рецепторами, поэтому при активации рецептора А не ингибируется.

По чувствительности к холерному и коклюшному токсинам G-белки можно разбить на четыре группы: чувствительные только к холерному токсину (Gs), только к коклюшному (Gi и Go), субстраты обеих токсинов (Gt) и G-белки, б-субъединицы которых не чувствительны ни к одному из токсинов.

Сопряжение с эффекторными системами

ГТФ-связываюшие белки управляют несколькими мембранными ферментами и рядом ионных каналов.

Вероятно с G-белками взаимодействует цитоскелет, благодаря чему гормоны регулируют секрецию и эндоцитоз. Из мембранных и внутриклеточных мишеней G-белков лучше всего изучены аденилатциклаза и фосфодиэстераза ГМФ сетчатки глаза, активируемые, соответственно, Gzx и трансдуцином. Эти два фермента принципиально отличаются друг от друга по структуре и механизму их регуляции G-белками.

В отношении активации других G-белок зависимых систем ясности нет. G - белки опосредуют не только активирующее, но и ингибирующее действие агонистов на внутриклеточные эффекторные системы. G-белок зависимое ингибирование показано для аденилатциклазы, потенциалправляемых кальциевых каналов, фосфолипазы С, Nа/К-АТФазы.

Исходя из данных, можно предположить, что существует два механизма G-белок зависимого ингибирования аденилатциклазы. Один из них обусловлен действием вг-субъединиц и, видимо, одинаков для всех G-белков, т.к вг-субъединицы у них сходные. Второй механизм заключается в специфическом ингибировании аденилатциклазы б-субъединицей белка Gi.

Регуляция активности G-белков

Различают неактивную форму G-белка - комплекс бвг-ГДФ и активированную форму бвг-ГТФ. Активация G-белка происходит при взаимодействии с комплексом активатор-рецептор, изменение конформации G-белка снижает сродство б-субъединицы к молекуле ГДФ и увеличивает к ГТФ.

Замена ГДФ на ГТФ в активном центре G-белка нарушает комплементарность между б-ГТФ и вг-субъединицами. Рецептор, связанный с сигнальной молекулой, может активировать большое количество молекул G-белка, таким образом обеспечивая усиление внеклеточного сигнала на этом этапе.

Активированная б-субъединица G-белка (б-ГТФ) взаимодействует со специфическим белком клеточной мембраны и изменяет его активность. Такими белками могут быть ферменты аденилатциклаза, фосфолипаза С, фосфодиэстераза цГМФ, Nа+-каналы, K+-каналы.

Следующий этап цикла функционирования G-белка - дефосфорилирование ГТФ, связанного с б-субъединицей, причём фермент, катализирующий эту реакцию, - сама б-субъединица.

Дефосфорилирование приводит к образованию комплекса б-ГДФ, который не комплиментарен специфическому белку мембраны (например аденилатциклазе), но имеет высокое сродство к вг-протомерам. G-белок возвращается к неактивной форме - бвг-ГДФ. При последующей активации рецептора и замене молекулы ГДФ на ГТФ цикл повторяется снова. Таким образом, бвг-субъединицы G-белков совершают челночное движение, перенося стимулирующий или ингибирующий сигнал от рецептора, который активирован первичным посредником (например, гормоном), на фермент, катализирующий образование вторичного посредника.

Некоторые формы протеинкиназ могут фосфорилировать б-субъединицы G - белков. Фосфорилированная б-субъединица не комплиментарна специфическому белку мембраны, например аденилатциклазе или фосфолипазе С, поэтому не может участвовать в передаче сигнала.

Аденилатциклаза

Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ - ключевой фермент аденилатциклазной системы передачи сигнала. Аденилатциклаза обнаружена во всех типах клеток.

Фермент относят к группе интегральных белков клеточной мембраны, он имеет 12 трансмембранных доменов. Внеклеточные фрагменты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ - вторичного посредника, участвующего в регуляции активности фермента протеинкиназы А.

На активность аденилатциклазы оказывают влияние как внеклеточные, так и внутриклеточные регуляторы. Внеклеточные регуляторы (гормоны, эйкозаноиды, биогенные амины) осуществляют регуляцию через специфические рецепторы, которые с помощью б-субъединиц G-белков передают сигналы на аденилатциклазу. бs-субъединица (стимулирующая) при взаимодействии с аденилатциклазой активирует фермент, бi-субъединица (ингибирующая) ингибирует фермент. В свою очередь, аденилатциклаза стимулирует проявление ГТФ-фосфатазной активности б-субъединиц. В результате дефосфорилирования ГТФ образуются субъединицы бs-ГДФ и бi-ГДФ, некомплементарные аденилатциклазе.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать