Задачи в школьном курсе математики
бучение краткой записи условия задачи - это и есть обучение анализу условия. Краткая запись- это модель текста задачи, материализованная форма проведения действия анализа условия. Этому следует обучать специально. Наиболее распространенной формой записи условия является запись отдельных ситуаций, например, следующим образом:

I день - 273 стр.

П день - в 7 раз меньше

III день - на 45 стр. больше

а также в виде чертежей, диаграмм, рисунков (см. рис.).

Рис. Краткая запись условия:

Дано: АВС, АВ = ВС, AD=DВ, BE = EC.

Доказать: АЕ=CD - это тоже материализованная форма анализа условия задачи, в которой понятия заменены их определениями.

При решении каждой задачи, способ решения которой неизвестен, используются синтетический и аналитический методы - происходит встречный процесс ot данных к требованию (синтез) и от требований к данным (анализ). На каком-то шаге устанавливается связь этих двух процессов - находится недостающий элемент, отношение - задача решена.

К какому бы разделу математики задача ни относилась, при ее решении происходит получение следствий из условия, какие-то условия заменяются эквивалентными, переформулируются, приобретают более удобный для операций вид, какие-то условия связываются. Установление связей между данными происходит не хаотично, а после выяснения отношений между данными под воздействием промежуточных и окончательных целей. Нахождение новых величин, отношений носит целенаправленный характер. Алгоритмов обучения творчеству нет, однако встречному движению от данных к требованию и от требования к условию можно обучать. Можно специально обучать получению следствий, переформулированию, решению задач с конца, другим эвристикам, демонстрируя их, акцентируя на них внимание, подбирая специальные задания.

Формированию умения анализировать условие задачи способствует выполнение обратных заданий: составить задачу по краткой схеме.

Начинать поиск решения задачи можно лишь тогда, когда ее условие полностью понято. Самоконтролем на этом этапе являются пересказ условия, подсчет данных и требования, проверка схем.

При осуществлении поиска основной идеи задачи продолжается выявление скрытых отношений, структуры задачи: рассматриваются под удобным углом зрения данные и требования, происходит сопоставление решаемой задачи с ранее решенными, конструируется модель задачи в соответствии с выдвигаемой гипотезой, осуществляется мысленный эксперимент, привлекаются различные эвристики.

В чем заключается деятельность по самоконтролю при анализе условия задачи? При анализе условия, как известно, осуществляется следующая деятельность: выделение данных и требований, выяснение смысла терминов; выделение объектов, ситуаций и величин, их характеризующих; моделирование ситуаций с помощью таблиц, чертежа, краткой записи условия задачи.

При этом самоконтроль осуществляется при пересказе текста задачи своими словами для выяснения, не забыто ли какое-либо данное, каждое ли слово в тексте понято. Если условие задачи моделируется с помощью чертежа, таблицы, то необходимо проверить, каждому ли данному нашлось место в этой модели. Для того чтобы проверить, правильно ли понято условие, можно рекомендовать восстановить текст задачи по краткой записи, модели, чертежу.

Вся эта деятельность направлена на то, чтобы выяснить, что задача понята целиком и правильно, структура задачи выделена и удерживается в памяти. Это обеспечивается обучением учащихся проводить анализ условий задачи.

При выдвижении гипотезы относительно возможного решения самоконтроль заключается в том, что решающему необходимо доказать себе, что выбор пути сделан правильно: что с помощью выбранной теоремы, правила, приема, определения можно довести решение задачи до логического конца; что задача подходит под определенный тип, предписание для которого имеется; что выбранная эвристика позволяет наметить ход решения задачи. Если ситуацию нельзя подвести под известный прием, если использованная эвристика заводит в тупик, если использованная теория не позволяет довести решение задачи до конца, необходимо отказаться от намеченного плана и продолжить анализ условия и привлечение новых идей.

Можно ли обучать учащихся самоконтролю на этом этапе?

Деятельности самоконтроля на этапе поиска плана решения задачи можно обучать, раскрывая эту деятельность, показывая, как учитель выходит из затруднительных ситуаций, которые возникают при поиске решения задачи. На этапе реализации полученного решения деятельность решающего состоит в применении выделенных эвристик, приемов, правил, определений, и при этом самоконтроль проявляет себя как пошаговый, пооперационный самоконтроль. Пошаговому контролю ученик обучается в рамках формирования различных приемов учебной работы и умственных действий, при обучении использованию определений, правил, теорем.

На ранее перечисленных этапах решения задачи самоконтроль проявляет себя как естественная неотрывная составляющая поисковой деятельности, которая может и не осознаваться решающим.

Последнему этапу решения задачи - проверке и исследованию полученного решения присвоен особый статус этапа, на котором осуществляется самоконтроль.

В методике преподавания математике выделены различные формы самоконтроля, проводимые после завершения этапа реализации намеченного плана. Приведем примеры таких форм.

1.Проверка с помощью частного случая. Например, если при решении неравенства получен некоторый числовой промежуток, то можно проверить некоторые конкретные значения переменной из этого промежутка.

2. Проверка совпадения размерности ответа с требованием задачи. Например, при нахождении пути значение скорости (км/ч) умножается на значение времени (ч). Умножение наименований должно дать наименование длины (км).

3. Проверка симметричности ответа, если в условии задачи какие-то данные симметричны. Например, если уравнения, входящие в систему, симметричны относительно переменных, то и найденные значения различных переменных должны быть равны.

4. Проверка ответа по здравому смыслу. Например, скорость пешехода не может быть равной 15 км/ч, количество рабочих не может быть дробным и т. д.

5. Проверка с помощью грубой прикидки. При этом данные грубо округляются и выясняется порядок возможного результата.

6. Проверка с помощью обратной задачи или с помощью другого способа решения.

7. Проверка текстовых задач, решенных с помощью составления уравнения, по смыслу. При этом необходимо, чтобы все промежуточные величины, зависящие от х, которые появляются в ходе решения задачи, имели бы смысл при полученном значении переменной.

Приведенные формы проверки, кроме 6, не дают полной гарантии правильно найденного и выполненного решения, но, тем не менее, с ними полезно ознакомить учащихся.

В работах, посвященных самоконтролю, предлагается следующая этапность в формировании самоконтроля: контроль за деятельностью учителя, взаимоконтроль - контроль учащихся за деятельностью товарища, контроль за собственной деятельностью. При этом речь, как правило, идет о контроле над исполнительской деятельностью. Такая последовательность имеет достаточное основание. Деятельность контроля состоит в сопоставлении, в сравнении двух действий: своего и контролируемого, а не просто в выполнении действия. Еще труднее посмотреть под новым углом зрения на свое исполнение действия.

3. Классификация задач. Роль алгоритмов и эвристик в обучении решению задач

В современной методической и психологической литературе принята классификация задач. По характеру требования:

-- задачи на доказательство;

-- задачи на построение;

-- задачи на вычисление.

По функциональному назначению:

-- задачи с дидактическими функциями;

-- задачи с познавательными функциями;

— задачи с развивающими функциями.

По величине проблемности:

-- стандартные;

-- обучающие;

-- поисковые;

— проблемные.

По методам решения:

-- задачи на геометрические преобразования;

-- задачи на векторы и др.

По числу объектов в условии задачи и связей между ними:

-- простые;

-- сложные.

По компонентам учебной деятельности:

-- организационно-действенные;

-- стимулирующие;

-- контрольно-оценочные.

Кроме того, различают задачи: стандартные и нестандартные; теоретические и практические; устные и письменные; одношаговые, двушаговые и др.; устные, полуустные, письменные и т.д.

При организации процесса обучения учащихся решению математических задач учитель сталкивается с вопросами: задачи какой сложности предложить ученикам, знакомы ли школьники с теми действиями, которые нужно применить при решении задач и т.п.

Если взять за основу следующую классификацию задач: на вычисление, на доказательство, на построение, на исследование, то такое деление не может быть инструментом в обучении школьников решению задач, потому что задачи этих видов не отличаются друг от друга уровнем сложности, характером деятельности человека по их решению. Например, в задачах на вычисление и построение приходится много доказывать, а в задачах на построение и доказательство приходится много исследовать и т.д., поэтому такая классификация задач ничего не дает. Кроме того, задачи делят на правильные, с противоречивыми данными, с лишними данными, теоретические и практические, стандартные и нестандартные и т.д.

В задаче выделяют основные компоненты:

1. Условие -- начальное состояние;

2. Базис решения -- теоретическое обоснование решения;

3. Решение -- преобразование условия задачи для нахождения требуемого заключением искомого;

4. Заключение -- конечное состояние.

Математическими считаются все задачи, в которых переход от начального состояния (1) к конечному (4) осуществляется математическими средствами, т.е. математическим характером компонентов: обоснование (2) и решение (3).

Если все компоненты задачи (условие, обоснование, решение, заключение) -- математические объекты, то задача называется чисто математической, если математическими являются только компоненты решение и базис решения, то задача называется прикладной математической задачей.

На основе рассмотренной модели общего понятия задачи и ее основных компонентов строят дидактически направленную модель типологических особенностей задачи, зависящих от того, на каком этапе обучения эта задача предъявлена учащимся, какими знаниями и опытом обладают школьники в момент ее предъявления, в какой форме сформулирована задача и т.д.

Проблемный характер задачной системы определяется тем, какие из основных компонентов задачи неизвестны.

Стандартной называется задача, в которой четко определено условие, известны способ решения и его обоснование, а также даны упражнения на воспроизведение известного. Задача называется обучающей, если в ней неизвестен или плохо определен один из основных компонентов. Если неизвестны два компонента, задача назевается поисковой, а если три -- проблемной.

Если рассматривать задачи как объект мыслительной деятельности учащихся, важно учитывать характер связей между элементами задачи, соотношение между воспроизводящей и творческой деятельностью учеников при решении задач, которое во многом определяется указанными связями.

Классификация задач, учитывающая характер связей между элементами задачи, соотношение между воспроизводящей и творческой деятельностью учеников:

-- алгоритмические задачи;

-- полуалгоритмические задачи;

-- эвристические задачи.

Алгоритмические задачи -- задачи, которые решаются с помощью непосредственного применения определения, теоремы, т.е. для решения которых имеется алгоритм. Например, задача на нахождение гипотенузы в прямоугольном треугольнике по известным катетам по формуле Пифагора. Применение алгоритма быстро и легко приводит к желаемому результату.

Полуалгоритмические задачи -- задачи, правила решения которых носят обобщенный характер и не могут быть полностью сведены к объединению элементарных актов. Связи между элементами этих задач легко обнаруживаются учениками. Полуалгоритмические задачи в качестве подзадач содержат алгоритмические задачи. Например, известны две стороны треугольника и высота, опущенная на третью сторону. Необходимо найти периметр треугольника.

Решая полуалгоритмические задачи, ученик учится «сворачивать» знания, фиксируя их в сознании крупными блоками. При этом он начинает применять усвоенные алгоритмы в разных ситуациях.

Эвристические задачи -- задачи, для решения которых необходимо выявить некоторые скрытые связи между элементами условия и требования или найти способ решения, причем этот способ не является очевидной конкретизацией некоторого обобщенного правила, известного ученику, или сделать и то и другое. Например, известны стороны треугольника. Нужно найти расстояние от середины высоты, проведенной к меньшей стороне, до большей стороны треугольника.

При решении эвристических задач ученик должен использовать эвристические приемы и методы.

Алгоритмические методы решения задач

Значительное количество задач предполагает при своем решений не творческую деятельность, а применение в основном определенного правила, формулы, определения, теоремы.

Например, для решения любого уравнения первой степени необходимо известные слагаемые перенести в правую часть, а слагаемые, содержащие неизвестные, перенести в левую часть, привести подобные члены и обе части уравнения разделить на коэффициент при неизвестном, если он отличен от нуля. Если он равен нулю, то поступают известным образом.

Приведенное правило - предписание алгоритмического типа, или алгоритм решения линейного уравнения. Правила сравнения чисел, действий над числами в различных числовых множествах, решения линейных, квадратных уравнений, неравенств - все это примеры алгоритмов. Под алгоритмом понимается точное общепонятное предписание о выполнении в определенной последовательности операций для решения любой из задач, принадлежащих некоторому классу.

Алгоритм может быть задан в виде таблицы, правила, формулы, определения, описания. Алгоритм может регламентировать действие с различной степенью подробности - свернутости, в зависимости от того, кому он предназначается. Если алгоритм предъявлен в форме последовательности команд, то это готовая программа действия. Приведем пример. Чтобы сложить десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы запятая была записана под запятой; 3) выполнить сложение, не обращая внимания на запятую; 4) поставить в ответе запятую под запятой в данных дробях (Випенкин Н.Я. и др. Математика 5- М., 2000).

Если алгоритм задан в виде формулы, правила, таблицы, определения, то программы нет. Ее предстоит создать решающему задачу. Рассмотрим в качестве примера определение решения системы неравенств с переменной как значение переменной, при котором каждое из неравенств системы обращается в верное числовое неравенство. Определение подразумевает следующие шаги решения системы неравенств: 1) решить каждое неравенство; 2) найти пересечение полученных множеств.

Алгоритмы можно разделить на алгоритмы распознавания и преобразования. Признаки делимости, рассмотренные ранее алгоритмы подведения под определение и под понятие являются примерами алгоритмов распознавания. Алгоритмы по применению формул являются алгоритмом» преобразования. Однако при применении конкретной формулы, например, квадрата суммы двух чисел, вначале происходит узнавание формулы, доказательство того, что выбор формулы сделан правильно, а затем производится собственно преобразование: актуализация формулы и использование ее по шагам. Описанная деятельность состоит из следующих шагов: 1) найти первый член двучлена; 2) найти второй член двучлена; 3) возвысить первый член двучлена в квадрат; 4) составить произведение первого и второго членов двучлена; 5) удвоить результат предыдущего шага; 6) возвысить второй член двучлена в квадрат; 7) результаты третьего, пятого и шестого шагов сложить.

Значительное число различных правил в школьных учебниках математики в последнее время сообщается учащимся в форме алгоритма с выделенной последовательностью шагов. Использование правила в этом случае представляет собой меньшую трудность для учащихся, чем использование правила при отсутствии выделенных шагов или если какие-то операции - шаги действия в предписании пропущены, только подразумеваются и должны быть восполнены учащимися самостоятельно.

Рассмотрим правило сложения чисел с разными знаками в следующей форме: чтобы сложить два числа с разными знаками, надо: 1) из большего модуля вычесть меньший; 2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

Этот алгоритм требует от школьника доработки, т. к. в нем не обозначены шаги: найти модуль каждого числа; сравнить модули и выделить число с большим модулем; определить знак числа, имеющего больший модуль. Эти шаги отдельными учащимися легко выполняются, а для других их выделение представляет существенные трудности.

В отдельных случаях операции, входящие в состав действий, приведены в учебниках в описательной форме или показаны на примерах, и для осуществления действий учащимся требуется выделить операции - отдельные шаги действия самостоятельно, как, например, при составлении пропорций при использовании подобия треугольников.

Проблема составления алгоритмов по изученному материалу связана с рядом важнейших проблем обучения математике: применение теоретических знаний на практике и развитие алгоритмического мышления. Под алгоритмическим мышлением понимается особый аспект культуры мышления, характеризующийся умением составлять и использовать различные алгоритмы.

Составлению, выделению алгоритмов необходимо специально обучать.

Это может происходить с помощью проведения обобщений при решении нескольких аналогичных задач. Необходимо обучать чтению формул словами, необходимо обучать переходу от речевой, формы в аналитическую и обратно, необходимо обучать строить программы действий в тех случаях, когда материал в книге или в рассказе предъявлен в описательной форме. Это и будет означать обучение применению теоретических знаний на практике и развитие алгоритмического мышления. Необходимо также обучать разворачивать, дополнять алгоритмы, предъявленные в готовой форме.

При использовании готовых алгоритмов целесообразно пользоваться компактным методом. Метод состоит в том, что (алгоритм) правило произносится по частям, на которые оно разбито по смыслу, и каждая операция выполняется вслед за произнесением соответствующего текста (пример приведите самостоятельно). Тем самым обеспечивается сознательное усвоение соответствующего правила. Компактный метод противопоставляется раздельному, когда произнесение правила целиком и его применение следуют друг за другом.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать