Изучение метода координат в курсе геометрии основной школы
p align="left">Метод координат - это универсальный метод. Он обеспечивает тесную связь между алгеброй и геометрией, которые, соединяясь, дают «богатые плоды», какие они не могли бы дать, оставаясь разделенными.

В отношении школьного курса геометрии можно сказать, что в некоторых случаях метод координат дает возможность строить доказательства и решать многие задачи более рационально, красиво, чем чисто геометрическими способами. Метод координат связан, правда, с одной геометрической сложностью. Одна и та же задача получает различное аналитическое представление в зависимости от того или иного выбора системы координат. И только достаточный опыт позволяет выбирать систему координат наиболее целесообразно.

Глава 2

Методические основы обучения координатному методу

2.1.Этапы решения задач методом координат

Чтобы решать задачи как алгебраические, так и геометрические методом координат необходимо выполнение 3 этапов:

1) перевод задачи на координатный (аналитический) язык;

2)преобразование аналитического выражения;

3)обратный перевод, т. е. перевод с координатного языка на язык, в терминах которого сформулирована задача.

Для примера рассмотрим алгебраическую и геометрическую задачи и проиллюстрируем выполнение данных 3 этапов при их решении координатным методом.

№1. Сколько решений имеет система уравнений.

Решение:

1 этап: на геометрическом языке в данной задаче требуется найти, сколько точек пересечения имеют фигуры, заданные данными уравнениями. Первое из них является уравнением окружности с центром в начале координат и радиусом, равным 1, а второе -- уравнением параболы.

2 этап: построение окружности и параболы; нахождение точек их пересечения.

3 этап: количество точек пересечения окружности и параболы является ответом на поставленный вопрос.

№2. Найдите множество точек, для каждой из которых расстояния от двух данных точек равны.

Решение:

Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А Предположим далее, что АВ=а, тогда в выбранной системе координат А(0,0) и В(а,0). Точка М(х,у) принадлежит искомому множеству тогда и только тогда, когда АМ=МВ, или, что то же самое, АМ2=МВ2. Используя формулу расстояния от одной точки координатной плоскости до другой, получаем АМ2=x2+y2, MB2=(x-a)2+y2. Тогда х22=(х-а)2 + у2

Равенство х22=(х-а)2+у2 и является алгебраической моделью ситуации, данной в задаче. На этом заканчивается первый этап ее решения (перевод задачи на координатный язык).

На втором этапе осуществляется преобразование полученного выражения, в результате которого получаем соотношение .

На третьем этапе осуществляется перевод языка уравнения на геометрический язык. Полученное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А на расстояние , т.е. серединного перпендикуляра к отрезку АВ.

2.2 Задачи, обучающие координатному методу

Для разработки методики формирования умения применять координатный метод важно выявить требования, которые предъявляет логическая структура решения задач мышлению решающего. Координатный метод предусматривает наличие у обучающихся умений и навыков, способствующих применению данного метода на практике. Проанализируем решение нескольких задач. В процессе этого анализа выделим умения, являющиеся компонентами умения использовать координатный метод при решении задач. Знание компонентов этого умения позволит осуществить его поэлементное формирование.

Задача №1 . В треугольнике ABC: AC=b, AB=c, ВС=а, BD - медиана. Докажите, что .

Выберем систему координат так, чтобы точка А служила началом координат, а осью Ох - прямая АС (рис. 2).

(умение оптимально выбирать систему координат, т. е. так, чтобы наиболее просто находить координаты данных точек).

В выбранной системе координат точки А, С и D имеют следующие координаты: А(0,0), D(,0) и С(b,0)

(умение вычислять координаты заданных точек). Обозначим координаты точки В через х и у. Тогда используя формулу для нахождения расстояний между двумя точками, заданными своими координатами, получаем:

х222 , (x-b)2+y2=a2 (1)

(умение находить расстояние между двумя точками, заданными координатами)

По той же формуле . (2)

Используя формулы (1) находим х и у.

Они равны:

; .

Далее, подставляя х и у в формулу (2), находим .

.

(умение выполнять преобразования алгебраических выражений)

Задача №2. Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная.

Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А.

(умение оптимально выбирать систему координат).

Предположим АВ=а, тогда в выбранной системе координат А(0,0), В(а,0).

(умение находить координаты заданных точек)

Точка М(х,у) принадлежит искомому множеству тогда только тогда, когда AM2-MB2=b2 где b - постоянная величина

(умение переводить геометрический язык на аналитический, составлять уравнения фигур).

Используя формулу расстояний между двумя точками, получаем:

, ,

(умение вычислять расстояние между точками, заданными координатами), или . Данное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А на расстояние .

(умение видеть за уравнением конкретный геометрический образ)

Нетрудно видеть, что и для решения этой задачи необходимо овладение перечисленными выше умениями. Кроме того, для решения приведенной задачи, а также и других задач важно умение «видеть за уравнением» конкретный геометрический образ, которое является обратным к умению составлять уравнения конкретных фигур.

Выделенные умения являются основой при решении и более сложных задач.

Задача №3. В трапеции меньшая диагональ перпендикулярна основаниям. Найти большую диагональ, если сумма противоположных углов равна , а основания равны а и b.

Направим оси координат по меньшей диагонали и одному из оснований (рис. 3).

(умение оптимально выбирать систему координат).

Тогда точка А имеет координаты (0,0), точка В - (а,0), точка С - (0,c), точка D - (b,c).

(умение находить координаты заданных точек)

Пусть и острые углы в трапеции АВСD, тогда их сумма равна . Для вычисления длины большей диагонали BD надо найти значение с. Его можно вычислить 2 способами. Первый - из прямоугольного треугольника АВС по формуле находим . Второй способ из прямоугольного треугольника ACD: . Отсюда получили, что

(1)

Из равенства (1) находим отношение : оно равно -, так как . Выразим . Он равен , исходя из этого, пользуясь зависимостью (1), получаем .

(умение выразить недостающие координаты через уже известные величины)

Далее воспользовавшись координатной формулой расстояния между двумя точками, найдем длину BD.

(умение вычислять расстояние между точками, заданными координатами)

Она равна .

Итак, компонентами умения применять координатный метод в конкретных ситуациях являются следующие умения:

1. переводить геометрический язык на аналитический для одного типа задач и с аналитического на геометрический для другого;

2. стоить точку по заданным координатам;

3. находить координаты заданных точек;

4. вычислять расстояние между точками, заданными координатами;

5. оптимально выбирать систему координат;

6. составлять уравнения заданных фигур;

7. видеть за уравнением конкретный геометрический образ;

8. выполнять преобразование алгебраических соотношений.

Данные умения можно отработать на примере следующих задач, формирующих координатный метод:

1) задачи на построение точки по ее координатам;

2) задачи на нахождение координат заданных точек;

3) задачи на вычисление расстояния между точками, заданными координатами;

4) задачи на оптимальный выбор системы координат;

5) задачи на составление уравнения фигуры по ее характеристическому свойству;

6) задачи на определение фигуры по ее уравнению;

7) задачи на преобразование алгебраических равенств;

Приведем примеры таких задач.

I. Построение точек на плоскости.

С координатной прямой, а затем и с координатной плоскостью учащиеся знакомятся в 5-6 классах при изучении математического материала. При этом удобно использовать мультимедийные презентации, которые позволяют в динамике излагать необходимый материал, использовать всевозможные иллюстрации и звуковые эффекты, тем самым, заинтересовывая учащихся и являясь хорошим наглядным средством. Одним из примеров является презентация «Метод координат», опирающаяся на учебник [7]. (см. приложение 1). Приведем несколько примеров задач, которые можно использовать при изучении координатной плоскости. Эти задачи могут быть использованы:

§ для оттачивания навыков построения точек по их координатам со всем классом;

§ для дополнительных заданий отстающим ученикам;

§ для развития интереса к изучаемой теме.

1) На координатной плоскости постройте точки А(7,2), B(-2,1), C(0,2).

2) Отметьте на плоскости несколько точек. Начертите произвольную систему координат и найдите в ней координаты заданных точек.

3)

Постройте фигуры по координатам их узловых точек. Указание: узловыми будем называть точки, служащие концами отрезков, образующих фигуры. Точки, координаты которых записаны подряд через запятую, соединяйте последовательно друг с другом. Если же координаты разделяются знаком «;», то соответствующие точки не следует соединять. Они нужны для изображения вспомогательных элементов.

А) Камбала (Рис. 4)

(3,7), (1,5), (2,4), (4,3),

(5,2), (6,2), (8,4), (8,-1),

(6,0), (0,-3),(2,-6),(-2,-3),

(-4,-2),(-5,-1),(-6,1),(-4,1);

(-6,1), (-6,2), (-3,5), (3,7);

(-4,-2),(-2,0),(-2,2),(-3,5);(-3,3).

Б)Найдите координаты выделенных на рисунке точек, двигаясь по часовой стрелке от самой жирной точки. (Рис. 5 и 6)

II.Задачи на выбор системы координат

Выбор системы координат имеет очень важное значение при применении метода координат.

Для примера возьмем задачу, которая рассмотрена в учебнике [2] «Середина гипотенузы прямоугольного треугольника равноудалена от его вершин».

Первым шагом при применении метода координат является такой выбор осей и системы координат, при котором алгебраические выкладки становятся более простыми. Для данной задачи удачный выбор системы координат показан на рисунке 7. Таким образом, начало координат помещаем в точку А, а оси проводим через точки В и С так, чтобы эти точки лежали на положительных лучах осей. Следовательно, В(а,0) и С(0,b). Поэтому по формуле середины отрезка D(). Теперь , .

Поэтому AD=BD. А так как по определению середины отрезка BC=CD, то теорема доказана.

Можно выбрать систему координат и по-другому (рис.8, рис.9). Если выбрать оси совсем случайно, то легкую задачу можно превратить в очень трудную. Чтобы начать доказательство исходя из рисунка 10, нужно найти способ, позволяющий выразить алгебраически, что треугольник ABC имеет при вершине А прямой угол. Сделать это можно, но будет это не очень просто.

Поэтому необходимо вырабатывать у учащихся, начиная с 6 класса, представления о возможности произвольного выбора системы координат. Эту работу целесообразно вести в процессе решения задач. В целях пропедевтической работы можно рекомендовать в 6 классе задачи из учебника на нахождение координат точек по рисунку, разнообразя их с помощью изменения направления осей и начала координат. (см. приложение1)

1. Длина отрезка АВ равна 5см. а)Выберите систему координат, в которой можно было бы наиболее просто определить координаты концов отрезка. б)Выберите систему координат так, чтобы координаты концов отрезка были бы: А (-2.5,0), В(2.5,0).

2. Постройте квадрат ABCD со стороной 2 см; отметьте точку М- центр квадрата. Поместите начало координат последовательно в точки A, B, C, D и выберите направление осей координат так, чтобы точка М в каждой системе координат имела координаты (1;1). За единичный примите отрезок длиной 1 см.

3. Треугольник ABC равносторонний (длина стороны равна 6 см.). Выберите систему координат так, чтобы можно проще было бы определить координаты его вершин.

III. Расстояние между точками

1) Точка М(а,с) находится от начала координат и точки А(4,0) соответственно на расстояниях 3 и 4 см. Определите координаты точки М.

2) Дан прямоугольник ABCD (АВ=2 см., ВС=4 см.). Как выбрать систему координат, чтобы его вершины имели координаты А(-1,-2), В(-1,2), С(1,2), D(l,-2)?

3) Длины сторон треугольника ABC равны 3, 4 и 5 см. Выберете систему координат и определите в ней координаты вершин треугольника ABC.

4) Вершины четырехугольника ABCD имеют следующие координаты: А(-3,1), В(3,6), С(2,2) и D(-4,3). Установите вид четырехугольника.

IV. Составление уравнения фигур

Это умение является одним из основных умений, которые необходимы при применении метода координат к решению задач.

1) Изобразите систему координат. Отметьте на оси Ох точки А и В. Запишите соотношения, которым удовлетворяют координаты точек, принадлежащих: а)отрезку АВ; б)лучу АВ; в)лучу ВА;

2) Запишите уравнение прямой, содержащей начало координат и точку А(2,5).

3) Запишите уравнение прямой, содержащей точки А(2,7)и В(1,3).

4) Изобразите на координатной плоскости произвольную прямую и найдите ее уравнение.

5) Запишите соотношения, которым удовлетворяю координаты точек прямоугольника с вершинами А(2,3), В(2,5), С(4,5), D(4,3).

6) Что представляют собой множества точек плоскости, координаты которых удовлетворяют неравенствам: а)х?3; b)-5?х?0; c)x>1; d)x<-2; e)?2; f)?0?

7) Какую фигуру образует множество точек, координаты которых удовлетворяют системе неравенств 2?x?5 и 1?y?3?

8) Постройте точки, симметричные точкам А(2,-3) , В(5,0), С (0,7) относительно: а) оси Ох; б) оси Оу; в)биссектрисы I и III координатных углов. Запишите эти координаты.

9) Установите, относительно какой из координатных осей симметричны точки А(1,2), В (-7,2).

10) Точки А(5,…), В(…,2) симметричны относительно оси Ох. Запишите пропущенные координаты.

11) Постройте образы точек А(1,5), В(-2,3), С(3,0) при параллельном переносе а)О(0,0)>К(3,0); 6)0(0,0)>М(2,3). Запишите их координаты.

12) С помощью какого параллельного переноса можно отобразить точку М(-3,4) в точку M1(2,4)?

13) Найдите на прямых у=-Зх+1 и у=2х+3 точки, симметричные относительно оси Ох.

14) Запишите уравнение прямой, на которую отображается прямая у=4х-3 вектором с координатами (3,4).

15) На прямых у=Зх+2 и у=-5х+5 найдите такие точки, которые находятся одна от другой на расстоянии 5 см, и принадлежат прямой, параллельной оси Ох.

2.3 Виды задач, решаемых методом координат

Применяя метод координат, можно решать задачи двух видов.

1. Пользуясь координатами можно истолковать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функции первый пример такого применения метода координат.

2. Задавая фигуры уравнениями и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Например, можно выразить через координаты основную геометрическую величину - расстояние между точками.

В связи с усилением роли координатного метода в изучении геометрии особенно актуальной становиться проблема его формирования. Наиболее распространенными среди планиметрических задач, решаемых координатным методом, являются задачи следующих 2 видов: 1) на обоснование зависимостей между элементами фигур, особенно между длинами этих элементов; 2) на нахождение множества точек, удовлетворяющих определенным свойствам.

Примером задач первого вида может служить следующая:

«В треугольнике ABC, AB=c, AC=b, BC=a, BD - медиана.

Доказать, что »

Задача: «Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная» - является примером задач второго вида.

Решения этих задач были разобраны выше.

Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов.

Пример 1. Докажите, что сумма квадратов расстояний от точки, взятой на диаметре окружности, до концов любой из параллельных ему хорд постоянна.

Решение:

Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности . Используя это уравнение находим координаты точек Р() и М(). Необходимо доказать, что АМ2+АР2 не зависит от переменной b. Найдем АМ2 и АР2 используя формулу нахождения расстояния между двумя точками по их координатам: . Они соответственно равны и , а их сумма после приведения подобных равна 2а2+2. Это число не зависит от переменной b, что и требовалось доказать.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать