Методика обучения решению комбинаторных задач

Методика обучения решению комбинаторных задач

2

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Московский Государственный Гуманитарный Университет имени М.А. Шолохова

Кафедра Методики преподавания математики

Выпускная квалификационная работа

«Методика обучения решению комбинаторных задач и формирование первичного представления о вероятности в 5-6 классах»

Москва, 2008

Содержание

Введение

1. Психологические особенности учащихся 5-6 классов

1.1 Развитие логического мышления у школьников посредством математики

2. Содержание вопроса комбинаторики и теории вероятности в учебной литературе

2.1 Анализ учебной литературы

2.2 Анализ учебно-методической литературы

2.3 Общие сведения

3. Развитие интереса к изучению математики у учащихся

3.1 Примерные уроки по теме «Решение комбинаторных задач и теория вероятностей»

3.2 Экспериментальная часть

Заключение

Библиография

Приложения

Введение

На современном этапе развития общества, когда в нашу жизнь стремительно вошли референдумы и социологические опросы, кредиты и страховые полисы, разнообразные банковские начисления и т.п., становится очевидной актуальность включения в школьный курс математики материала вероятностно-статистического характера.

Данная тема исследования актуальна для наших детей в связи с тем, что современные школьники стали более развиты и им требуются не просто задачи на вычисление, а задачи, требующие в своем решении участия логического мышления, а также задачи, наиболее приближенные к жизненным ситуациям. Такими задачами и являются задачи на комбинаторику и вероятность. Данное исследование определяет уровень логического мышления школьников 10-13 лет. А выявление методов обучения решению таких задач дает возможность выбора наиболее оптимального метода для преподавания в школе.

Данная тема исследования интересна потому, что таких задач в школьной программе 5-6 классов не много, но и их решение можно свести к игре, интересной детям.

Объектом исследования являются задачи на комбинаторику и теорию вероятности.

Предметом, в свою очередь, методика обучения решению комбинаторных задач и формирования первоначального представления о вероятности в 5-6 классах основной школы.

Целью исследования выступает изучение методики обучения решению комбинаторных задач и задач на вероятность в 5-6 классах основной школы.

Цель нашего исследования раскрывается в следующих задачах:

1. Проанализировать научную и методическую литературу по теме исследования.

2. Изучить психологические особенности учащихся 5-6 классов.

3. Выявить уровень логического мышления учащихся 5-6 классов.

4. Изучить методику ознакомления детей с задачами на комбинаторику, соединив их с решением жизненных ситуаций для возраста учащихся 5-6 классов.

5. Разработать фрагменты уроков и занятий математического кружка.

6. Проверить методику обучения решению комбинаторных задач и задач на вероятность в 5-6 классах основной школы на педагогической практике.

В основу исследования положена гипотеза, согласно которой возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи, задачи, содержащие жизненные ситуации.

1. Психологические особенности учащихся 5-6 классов

Учащиеся 5-6 классов - это дети 11-13 лет. Психологические особенности учащихся этого возраста, по мнению различных авторов, рассматриваются как кризисные и связаны с перестройкой в трех основных сферах: телесной, психологической и социальной. На телесном уровне происходят существенные гормональные изменения, на социальном уровне подросток занимает промежуточное положение между ребенком и взрослым, на психологическом подростковый возраст характеризуется формированием самосознания.

Каждый возрастной период является переходным, подготавливающим человека к переходу на более высокую возрастную ступень. Развитие всех сторон личности и интеллекта подростка предполагает сотрудничество ребенка и взрослого в процессе осуществления собственной деятельности, игры, учения, общения, труда. Такое сотрудничество в школе нередко отсутствует.

По мнению Л.И. Божович, главное внимание в воспитании подростка следует сосредоточить на развитии мотивационной сферы личности: определения своего места в жизни, формировании мировоззрения и его влияния на познавательную деятельность, самосознание и моральное сознание.

Именно в этот период формируются нравственные ценности, жизненные перспективы, происходит осознание самого себя, своих возможностей, способностей, интересов, стремление ощутить себя и стать взрослым, тяга к общению со сверстниками, оформляются общие взгляды на жизнь, на отношения между людьми, на свое будущее, иными словами - формируются личностные смыслы жизни.

Основными новообразованиями в подростковом возрасте являются: сознательная регуляция своих поступков, умение учитывать чувства, интересы других людей и ориентироваться на них в своем поведении.

Новообразования не возникают сами по себе, а являются итогом собственного опыта ребенка, полученного в результате активного включения в выполнение самых разных форм общественной деятельности.

Л.И. Божович подчеркивала, что в психическом развитии ребенка определяющим является не только характер его ведущей деятельности, но и характер той системы взаимоотношений с окружающими его людьми, в которую он вступает на различных этапах своего развития.

Поэтому общение подростков со сверстниками и взрослыми необходимо считать важнейшим условием их личностного развития. Неудачи в общении ведут к внутреннему дискомфорту, компенсировать который не могут никакие объективные высокие показатели в других сферах их жизни и деятельности. Общение субъективно воспринимается подростками как нечто личностно очень важное. Однако, как показывает анализ современного педагогического процесса, потребность учащихся подростков в благоприятном доверительном общении со взрослыми и сверстниками в школе очень часто не получает своего удовлетворения. Это ведет к формированию повышенной тревожности, развитию чувства неуверенности в себе, связанного с неадекватной и неустойчивой самооценкой, со сложностями в личностном развитии, мешает ориентации в жизненных ситуациях. Все это много раз усугубляется, если у ребенка отсутствует благоприятное общение в семье.

При работе с младшими подростками упор следует сделать на пробуждение интереса и развития доверия к самому себе, на понимание своих возможностей, способностей, особенностей характера.

Важным показателей умственного развития детей является уровень сформированности у них обобщающего мышления, отражающий интеллект, который формируется у них в учебной деятельности.

Определенный тип организации образовательных воздействий, как правило, приводит к формированию в той или иной конкретной школе некоторого "типичного учащегося", психологические особенности развития которого соответствуют специфике осуществляемых воздействий. Это проявляется в особенностях интеллектуального развития учащихся, степени их включенности в учебную работу на уроках, учебной инициативы, активности взаимодействия с учителей и одноклассниками. Чем в большей мере выражены перечисленные параметры, тем с большей определенностью можно говорить об эффективной психологической организации образовательных воздействий.

1.1 Развитие логического мышления школьников средствами математики

В последнее время много говорится о преемственности в обучении между начальной и средней школой. Этот вопрос стал так остро потому, что наблюдается значительное снижение успеваемости при переходе учащихся в среднее звено, растет нежелание посещать школу, угасает интерес к учебе. Причин тому много, например: увеличение учебной нагрузки, трудности в адаптации к новым условиям обучения, физиологические особенности и изменения в психике ребенка и т.д. Считается, что складывающаяся к 11 годам система мыслительных операций подготавливает почву для формирования научных понятий, и на последнем этапе интеллектуального развития, т.е. периоде формальных операций, подросток освобождается от конкретной привязанности к объектам, и тем самым приобретает возможность мыслить так же, как взрослый человек. Он рассматривает суждения, как гипотезы, из которых можно вывести всевозможные следствия; его мышление становится гипотетико-дедуктивным. Согласно Пиаже эта стадия заканчивается к 14-15 годам.

Школа обязана строить обучение таким образом, чтобы шло интенсивное развитие различных качеств ребенка, в частности, его логического мышления. В 5-6 классах этому наиболее полно соответствует математика. При этом считается, что «левополушарные» формально-логические компоненты мышления организуют любой знаковый материал таким образом, что создается строго упорядоченный и однозначно понимаемый контекст, необходимый для успешного общения между людьми. Это могут быть не только слова, но и другие символы, знаки и даже образы, то есть когда из всех реальных и потенциальных связей между предметами и явлениями выбирается несколько определенных, не создающих противоречий и укладывающихся в данный контекст.

По некоторым данным, созревание правого полушария идет более быстрыми темпами, чем левого, и поэтому в ранний период развития его вклад в обеспечение психологического функционирования превышает вклад левого полушария, даже утверждается, что до 9--10 лет ребенок является правополушарным существом. Такая оценка не лишена некоторых оснований, поскольку соотносится с определенными особенностями психического развития детей в дошкольном, а отчасти и в младшем школьном возрасте.

В возрасте 10-11 лет происходят изменения в головном мозге, более быстрыми темпами начинает развиваться левое полушарие. Это обстоятельство и должно учитываться при обучении математике, как науке особым образом развивающей логическое мышление. В этом процессе ребенок все чаще начинает мыслить не только образами, но у него появляется возможность к абстрагированию. Именно отсюда при обучении младших подростков математике следует учитывать возрастную ассимитрию полушарий головного мозга. В частности, использовать моделирование учебных задач, проигрывание их на уроке, накопление образов, связанных с собственным сопереживанием той или иной учебной задаче.

Остановимся на некоторых особенностях содержания учебного материала в 5-6 классах. Многие темы не соответствуют уровню формирования логического мышления детей этого возраста, но большинство учителей математики считают обратное.

2. Содержание вопроса комбинаторики и теории вероятности в учебной литературе

ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ

ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

ПО МАТЕМАТИКЕ

ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

Элементы логики, комбинаторики, статистики

и теории вероятностей

Доказательство. Определения, доказательство, аксиомы и теоремы, следствия.

Необходимые и достаточные условия. Контрпример. Доказательство от противного. Прямая и обратная теоремы.

Понятие об аксиоматике и аксиоматическом построении геометрических решений. Пятый постулат Евклида и его история.

Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера.

Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий.

Вероятность. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

На рубеже третьего тысячелетия становится очевидной универсальность вероятностно-статистических законов, они стали основой описания научной картины мира. И ребенок в своей жизни ежедневно сталкивается с вероятностными ситуациями, ведь игра и азарт составляют существенную часть его жизни. Круг вопросов, связанных с осознанием соотношения понятий вероятности и достоверности, проблемой выбора наилучшего из нескольких вариантов решения, оценкой степени риска и шансов на успех, представлением о справедливости и несправедливости в играх и в реальных жизненных коллизиях - все это, несомненно, находится в сфере реальных интересов становления и развития личности.

Подготовку человека к таким проблемам и осуществляет школьный курс математики. Принципиальные решения о включении вероятностно-статистического материала как равноправной составляющей обязательного школьного математического образования приняты ныне и в нашей стране. Все перспективные государственные образовательные документы последних лет содержат вероятностно-статистическую линию в курсе математики 5-9 классов наравне с такими привычными линиями, как «Числа», «Функции», «Уравнения и неравенства», «Геометрические фигуры». Продолжение изучения этой линии предполагается в старших классах.

Современные стандарты и программы математического образования в основной школе предполагают пропедевтику основных понятий, знакомство на наглядном, интуитивном уровне с вероятностно-статистическими закономерностями в 5-6 классах, определение основных понятий, построение и изучение базовых вероятностно-статистических моделей - в 7-9 классах.

Первые учебники, в которых последовательно с 5 по 9 класс проводится вероятностно-статистическая линия, органично связанная с другими темами курса - это новый учебный комплект «Математика 5-6» по ред. Г.В. Дорофеева и И.Ф. Шарыгина, «Математика 7-9» под ред. Г.В. Дорофеева. в этих учебных комплектах принят статистический подход к понятию вероятности, который методически и психологически соответствует возрастным особенностям учеников основной школы.

Следует отметить, что наиболее подходит для реализации оптимального обучения школьников 10-11 лет математике учебный комплект под редакцией Г.В Дорофеева, а также комплект «Арифметика 5-6 класс» под редакцией С.М. Никольского. Был проведен сравнительный анализ обучения школьников 5-6 классов решению комбинаторных задач, обучающихся с помощью учебника С.М. Никольского и с помощью учебника Г.В. Дорофеева. Дети, наученные составлять дерево возможных вариантов, более осмысленно решали предложенные задачи, отсекая, если нужно, повторяющиеся комбинации. Так, решение задачи, с применением специальных методов, привело к правильному ответу на 37% учащихся больше, чем решение простым перебором.

Сохранение интереса к изучению математики при использовании новых комплектов учебников обеспечивается не только через дополнительные темы, но и через достаточное количество занимательных задач.

Занимательные задачи -- инструмент для развития мышления, ведущего к формированию творческой деятельности школьника. К таким задачам относятся задачи «на соображение», «на догадку», головоломки, нестандартные задачи, логические задачи, творческие задачи. Например, задача 6-го класса: Восемь подружек решили обменяться фотографиями так, чтобы у каждой из них оказались фотографии остальных подруг. Сколько фотографий для этого потребуется.

Занимательный материал многообразен, но его объединяет следующее:
1. способ решения занимательных задач не известен;

2. занимательные задачи способствуют поддержанию интереса к предмету. Для решения занимательных задач характерен процесс поисковых проб. Появление догадки свидетельствует о развитии у детей таких качеств умственной деятельности как смекалка и сообразительность. Смекалка - это особый вид проявления творчества. Она выражается в результате анализа, сравнений, обобщений, установления связей, аналогий, выводов, умозаключений.

Систематизированный набор нестандартных задач применяется по индивидуальному плану учителя на уроках и во внеурочной работе. Конкретно можно рассмотреть некоторые темы: 5 класс, тема «Перебор возможных вариантов», в которой начинается изучение новой содержательной линии «Анализ данных»; 6 класс, тема «Вероятность события». Представлены характерные для комбинаторики задачи на размещения, сочетания, перестановки, но сами термины и формулы не рассматриваются. Предлагается более доступный детям данного возраста метод решения - построение дерева.

2.1 Анализ учебной литературы

Анализ начнём с учебника для 6 класса средней школы (под редакцией Дорофеева Г.В., Шарыгина И.Ф.). Авторы рассматривают комбинаторный принцип умножения, различные виды сочетаний (перестановки, размещения, сочетания) с повторениями и без повторений и формулы для их вычисления. Относительно теории вероятностей Дорофеев рассматривает понятие случайного события и вычисление вероятностей с помощью формул комбинаторики. Аналогично этому изданию учебник Зубаревой И.И., Мордковича А.Г. “Математика 5(6)”.

В учебнике Никольского С.М. и др. “Арифметика5-6” даются лишь определения различных соединений, формулы для их вычисления (6кл.) и классическое определение вероятности (8кл.). В этом учебнике рассмотрен минимальный круг вопросов. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. в учебнике для общеобразовательных учебных заведений “Алгебра. Функции. Анализ данных”. Рассмотрел вопросы, касающиеся исключительно теории вероятностей. Это классическое определение вероятности, понятие о генеральной совокупности и выборке, их параметры и оценки, а также оценка вероятности события по частоте.

Авторами разработана методика проведения практических занятий по информатике по теме "Начала комбинаторики". Основу теоретического материала составляет бесформульная комбинаторика: генерация сочетаний, перестановок и подмножеств, разбиения на слагаемые. Кроме этого предлагаются задачи, состоящие в требовании выделить из всех возможных решений такое, которое удовлетворяет заданному дополнительному требованию.

Опыт проведения занятий подтвердил, как велика роль комбинаторных задач как средства развития мышления учащихся, формирования приемов умственной деятельности - анализа, синтеза, обобщения через реализацию полной схемы эвристических рассуждений: анализ проблемы, выдвижение гипотез, их проверка. Кроме этого поддерживается на достаточно высоком уровне познавательный интерес учащихся и к математике, и к информатике, а также укрепляются межпредметные связи.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать