Методика проведення факультативного курсу з хім

Методика проведення факультативного курсу з хім

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Чернігівський державний педагогічний університет імені Т.Г.Шевченка

Хіміко-біологічний факультет

Кафедра хімії

Дипломна робота

(спеціальність 6.010103. Педагогіка і методика середньої освіти.

Хімія, біологія і основи екології)

ЕКОЛОГІЧНІ АСПЕКТИ ВИВЧЕННЯ ФАКУЛЬТАТИВНОГО КУРСУ „ОСНОВИ ХІМІЧНИХ ВИРОБНИЦТВ”

ЧЕРЕВКО ІГОР АНАТОЛІЙОВИЧ

Науковий керівник:

к.т.н., доц. кафедри хімії

Замай Жанна Василівна

ЧЕРНІГІВ - 2007 р.

ЗМІСТ

  • ВСТУП
  • РОЗДІЛ 1 Загальна характеристика та екологічні особливості хімічних виробництв
    • 1.1 Характеристика хімічних виробництв
      • 1.1.1 Місце хімічної промисловості в промисловому комплексі України
      • 1.1.2 Використання води та повітря в якості допоміжної сировини в хімічній промисловості
      • 1.1.3 Характеристика мінеральної сировини хімічного виробництва
    • 1.2 Екологічні наслідки хімічних виробництв
  • РОЗДІЛ 2. Місце факультативу в шкільному курсі хімії
  • РОЗДІЛ 3 Розробка факультативного курсу „Основи хімічних виробництв”
    • 3.1 Тематичне планування
    • 3.2 Методичне забезпечення уроків екологічного спрямування факультативного курсу „Основи хімічних виробництв”
  • ВИСНОВКИ
  • СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
ВСТУП

Актуальність. Хімічна промисловість має дуже складну галузеву структуру, що охоплює близько 200 взаємопов'язаних виробництв з великою номенклатурою продукції. Ці виробництва об'єднані у три великі групи: неорганічна або основна хімія, хімія органічного синтезу та гірничо-хімічна промисловість.

Хімічна промисловість спричиняє значне забруднення навколишнього середовища. в атмосферу викидається значна кількість неочищених газових викидів, у водні системи спускаються стічні води, які містять шкідливі речовини, ґрунт забруднюється твердими відвалами виробництва. Все це має негативні наслідки для здоров`я населення та планети в цілому.

Необхідно змінювати й удосконалювати самі технологічні процеси для того, щоб комплексно і найбільше повно переробляти в процесі виробництва вихідні матеріали, скорочувати тим самим обсяг відходів, переводити їх у форми, найменш шкідливі для навколишнього середовища або такі, що легко піддаються вторинній переробці або спеціальному збереженню, тобто необхідно створювати маловідхідні і безвідхідні технологічні процеси. В даному випадку введення факультативного курсу досить актуальне.

Предмет дослідження - методичне забезпечення факультативного курсу „Основи хімічних виробництв”.

Об`єкт дослідження - навчально-виховний процес в 11 класі.

Метою роботи є розробка методичного забезпечення факультативного курсу „Основи хімічних виробництв”.

Завдання роботи:

1) Дати характеристику властивостям сировини, яку можна використовувати для хімічних виробництв;

2) Проаналізувати екологічні проблеми та вплив хімічної промисловості на навколишнє середовище;

3) Охарактеризувати місце та значення факультативу „Основи хімічних виробництв” в шкільному курсі хімії;

4) Розробити тематичне планування та методичні розробки уроків для факультативного курсу „Основи хімічних виробництв”.

Практичне значення теми: при більш поглибленому вивченні основних хімічних виробництв в учнів розвивається цікавість до предмету хімії, що сприяє розвитку творчого інтересу та екологічного мислення, сприяє залученню дітей до природоохоронної діяльності, а в майбутньому може заохотити до вибору професії хімічного спрямування.

РОЗДІЛ 1. ЗАГАЛЬНА ХАРАКТЕРИСТИКА ТА ЕКОЛОГІЧНІ ОСОБЛИВОСТІ ХІМІЧНИХ ВИРОБНИЦТВ

1.1 Характеристика хімічних виробництв

1.1.1 Місце хімічної промисловості в промисловому комплексі України

Хімічна промисловість має дуже складну галузеву структуру, що охоплює близько 200 взаємопов'язаних виробництв з великою номенклатурою продукції. Ці виробництва об'єднані у три великі групи: неорганічна або основна хімія, хімія органічного синтезу та гірничо-хімічна промисловість.

Хімічна промисловість пов'язана з багатьма галузями. Вона комбінується з нафтопереробною, коксуванням вугілля, чорною та кольоровою металургією, лісовою промисловістю. Завдяки складній системі зв'язків утворюються певні поєднання виробництв, з яких формуються міжгалузеві комплекси. До таких комплексів належить і хіміко-лісовий. В одних випадках роль хімічної промисловості у цих комплексах провідна, в інших вона не має формуючого значення, лише доповнюючи усталену систему зв'язків. Проте загалом хімічну промисловість слід розглядати як головну галузь, що визначає склад і напрям розвитку комплексу. Здебільшого лісова промисловість розглядається у цьому комплексі як постачальник деревини для хімічної промисловості [18].

Технологія виробництва неорганічних речовин переважно виробляє напівфабрикати, що використовуються в інших галузях промисловості. Виняток становлять мінеральні добрива, які виробляє відповідна галузь.

Технологія виробництва органічних речовин включає виробництва вуглеводної сировини, органічних напівфабрикатів, синтетичних матеріалів. Основною сировиною для хімії органічного синтезу є вуглеводні нафти, природний та попутний газ. Використовуються також вуглеводневі сполуки, що одержуються з вугілля.

Гірничо-хімічна промисловість виробляє сировинну базу передусім для неорганічної хімії.

Хімічна промисловість значно поширена у розвинутих країнах. Лише у США виробляється понад чверть, а в шістьох найрозвинутіших країнах - понад 3/4 хімічної продукції світу.

Закономірність розвитку хімічної промисловості у США пояснюється наявністю на їх території значної кількості практично усіх видів хімічної сировини: нафти, газу, солей, фосфоритів тощо. Інші розвинуті країни значно залежать від імпорту хімічної сировини.

Розвинені країни мають потужну багатогалузеву хімічну промисловість. Навпаки, у невеликих країнах розвинута переважно одна галузь. Наприклад, у Швейцарії - фармацевтична, у Нідерландах - гумовотехнічна промисловість.

Основна хімія, як галузь, обіймає кислотну, содову промисловість та виробництво мінеральних добрив. Родовища природної сірки розташовані переважно в США, Канаді, Мексиці, Італії (пластмасові вироби), Запоріжжі (кремній-органічні сполуки, синтетичні смоли), Дніпродзержинську (полівініл, полістирол), а також Калуші, Одесі, Києві, Фастові, що виробляють хімічну продукцію і стали центрами переробки синтетичних смол на пластмасові, плівкові та інші вироби [18].

Промисловість хімічних волокон. Найбільші підприємства розміщені у Чернігові, Києві (Дарницький шовковий комбінат), Черкасах.

Хімічна промисловість використовує повітря і воду у величезних кількостях для різноманітніших цілей. Це пояснюється комплексом цінних властивостей повітря і води, їх доступністю і зручностями застосування. Повітря є всюди. Хімічні підприємства будуються біля водних джерел.

1.1.2 Використання води та повітря в якості допоміжної сировини в хімічній промисловості

1. К
исень (повітря) використовується під час горіння та інших окисних процесів.

Частка Оксигену на Землі ~ 50 %. Атмосферний кисень становить від загальної кількості Оксигену -- 0,013 %, або 1 180 млн. т. До того ж його запаси постійно поновлюються: 1 га лісу виробляє 60 т кисню на рік).

Повітря. У хімічній промисловості повітря застосовують в основному як сировину або як реагент у технологічних процесах, а також для енергетичних цілей. Технологічне застосування повітря обумовлено хімічним складом атмосферного повітря; сухе, чисте повітря містить (об'ємна частка в %); N2 - 78,10; О2 - 20,93; Аг - 0,93; СО2 - 0,03 і незначні кількості Не, Ne, Кг, Хе, Н2, СН4, О3, NO. Найчастіше використовують кисень повітря як окислювач: окисний випал сульфідних руд кольорових металів, сірковмісної сировини при одержанні діоксиду сульфуру в сульфур-кислотному, целюлозно-паперовому виробництвах; окислення амоніаку у виробництві нітратної кислоти; неповне окислювання вуглеводнів при одержанні спиртів, альдегідів, кислот і ін.

Кисень, виділений ректифікацією рідкого повітря, у великих кількостях витрачають для кисневої плавки металів, у доменному процесі і т.п.; при ректифікації одержують також азот і благородні гази, в основному аргон. Азот використовують як сировину у виробництві синтетичного амоніаку й інших азотовмісних речовин і як інертний газ [22].

Повітря, застосовуване як реагент, піддається в залежності від характеру виробництва очищенню від пилу, вологи і контактних отрут. Для цього повітря пропускають через промивні вежі з різними рідкими поглиначами (Н2О, луги, етаноламіни й ін.), мокрі і сухі електрофільтри, апарати з вологопоглинальними сорбентами й ін.

Енергетичне застосування повітря пов'язане насамперед з використанням кисню як окиснювача для одержання теплової енергії при спалюванні різних палив. Повітря використовується також як холодоагент при охолодженні газів і рідин через теплообмінні поверхні холодильників або в апаратах прямого контакту (наприклад, охолодження води в градирнях), при грануляції розплавів деяких сполук (наприклад, аміачної селітри).

В інших випадках нагріте повітря використовується як теплоносій для нагрівання газів або рідин. У пневматичних барботажних змішувачах використовують стиснене повітря для перемішування рідин і пульпи (флотація), у форсунках - для розпилення рідин у реакторах і топках.

2. Вода використовується як розчинник, реагент і теплоносій. (Якщо всі запаси води (75 % поверхні Землі), а це І 386 млн. м3 рівномірно розподілити по всій земній кулі, то вона залишилася б під водою шаром 2 713 м. Проте прісна вода становить усього 2,5 %. В наш час проблеми водопостачання полягають у проблемі транспортування і збереження чистоти природної води [13].

Завдяки універсальним властивостям вода знаходить у народному господарстві різноманітне застосування як сировина, як хімічний реагент, як розчинник, тепло- і холодоносій. Наприклад, з води одержують водень різними способами, водяна пара застосовується в тепловій і атомній енергетиці; вода служить реагентом у виробництві мінеральних кислот, лугів і основ, у виробництві органічних продуктів - спиртів, оцтового альдегіду, фенолу й інших численних реакцій гідратації і гідролізу. Воду широко застосовують у промисловості як дешевий, доступний, невогненебезпечний розчинник твердих, рідких і газоподібних речовин (очищення газів, одержання розчинів і т.п. ). Винятково велику роль грає вода в текстильному виробництві: при одержанні різних волокон - натуральних, штучних і синтетичних, у процесах обробки і фарбування пряжі, суворих тканин і ін. Витрата води на 1 т віскозного волокна складає 2500 м3.

Як теплоносій вода використовується в різних системах теплообміну - в екзотермічних і ендотермічних процесах. Теплота фазового переходу Р - Г води значно вище, ніж для інших речовин, унаслідок чого водяна пара, що конденсується, є самим розповсюдженим теплоносієм. Водяна пара і гаряча вода мають значні переваги перед іншими теплоносіями - високу теплоємність, простоту регулювання температури в залежності від тиску, високу термічну стійкість і ін., унаслідок чого є унікальним теплоносієм при високих температурах. Воду використовують також як холодоагент для відводу теплоти в екзотермічних реакціях, для охолодження атомних реакторів. З метою економії витрати води застосовують так називану оборотну воду, тобто використану і повернуту у виробничий цикл.

Природні води містять різні домішки мінерального й органічного походження. До мінеральних домішок відносяться гази N2, O2, CO2 H2S, CH4, NH3; розчинені у воді солі, кислоти і основи знаходяться в основному в дисоційованому стані у вигляді катіонів і аніонів: Na+, K+, NH4+, Ca2+, Mg2+, Fe2+, Mn2+, HCO3-, C1-, SO42-, HSіО3-, F-, NO, СО32- ін. До органічних домішок відносяться колоїдні частки білкових речовин і гумінових кислот. Склад і кількість домішок залежать головним чином від походження води. За походженням розрізняють атмосферну, поверхневі і підземні води.

Атмосферна вода - вода дощових і снігових опадів - характеризується невеликим вмістом домішок. У цій воді утримуються в основному розчинені гази і майже цілком відсутні розчинені солі [18].

Поверхневі води - води річкових, озерних і морських водойм - відрізняються різноманітним складом домішок - гази, солі, основи, кислоти. Найбільшим вмістом мінеральних домішок відрізняється морська вода (солевміст більш 10 г/кг).

Підземні води - води артезіанських шпар, колодязів, ключів, гейзерів - характеризуються різним складом розчинених солей, що залежить від складу і структури ґрунтів і гірських порід. У підземних водах звичайно відсутні домішки органічного походження.

Якість води визначається її фізичними і хімічними характеристиками, такими, як прозорість, колір, запах, температура, загальний солевміст, твердість, окислюваність і реакція води. Ці характеристики показують наявність або відсутність тих або інших домішок.

Загальний солевміст характеризує присутність у воді мінеральних і органічних домішок. Для більшості виробництв основним якісним показником служить твердість води, обумовлена присутністю у воді солей кальцію і магнію. Твердість виражається в мілімоль-еквівалентах іонів Са2+ або Mg2+ у 1 кг води, тобто за одиницю твердості приймають вміст 20,04 мг/кг іонів кальцію або 12,16 мг/кг іонів магнію. Розрізняють три види твердості: тимчасову, постійн і загальну.

Тимчасова (карбонатна, або переборна) твердість обумовлена присутністю у воді гідрокарбонатів кальцію і магнію, що при кип'ятінні води переходять у нерозчинні середні або основні солі і випадають у вигляді щільного осаду (шумовиння):

Са(НСО3)2 = СаСО3 + Н2О + СО2

2Mg(НСО3)2 = MgCO3*Mg (ОН)2 + 3СО2 + Н2О

Постійна (некарбонатна, або непереборна) твердість обумовлюється вмістом у воді всіх інших солей кальцію і магнію, що залишаються при кип'ятінні в розчиненому стані. Сума тимчасової і постійної твердості називається загальною твердістю. Прийнято наступну класифікацію природної води за значенням загальної твердості (hо мг-екв/кг): hо<1,5 - мала твердість, hо = 1,5-3,0 - середня, hо = 3,0:6,0 - підвищену, hо = 6,0-12,0 - висока, hо > 12,0 - дуже висока.

Окислюваність води характеризується наявністю у воді органічних домішок і виражається в міліграмах кисню, що витрачається на окислювання речовин, що міститься в 1 кг води.

Активна реакція води - її кислотність або лужність - характеризується концентрацією водневих іонів. Реакція природних вод близька до нейтрального; рН - водневий показник, коливається в межах 6,8-7,3.

Виробництва, в залежності від цільового призначення води, пред'являють строго визначені вимоги до її якості, до вмісту домішок в ній [18].

Шкідливість домішок залежить від їх хімічного стану або дисперсності, а також зв'язана зі специфікою виробництва, що використовує воду. Грубодисперсні, механічні суспензії засмічують трубопроводи й апарати, зменшуючи їх продуктивність, утворюють пробки, що можуть викликати аварію. Домішки, що знаходяться у вигляді колоїдних часток, засмічують діафрагми електролізерів, викликають піністисть води в апаратах, погіршують обробку тканин і т.п..

Величезну шкоду приносять розчинені у воді солі і гази, що викликають утворення шумовиння і поверхневе руйнування металів внаслідок корозії. У текстильній промисловості солі, розчинені у воді, приводять до великої перевитрати мила в процесах мийки і миловки внаслідок утворення кальцієвого і магнієвого мила, що не володіє миючою дією:

2R - COONa + Са (НСО3)2 = (R - СОО)2 Са + 2NaHCO3

При мийці і миловці у твердій воді втрати мила досягають 8%. Нерозчинні, клейкі кальцієве і магнієве мила закріплюються на волокні і міцно утримують адсорбовані частки забруднень, що різко погіршує фарбування (нерівномірність фарбування і тьмяний тон), знижує міцність.

Хімічні і дифузійні процеси багатьох виробництв тісно пов'язані з активною реакцією води. До них відносяться виробництво цукру, паперу, текстильне виробництво й ін. Особливо чуттєві до рН води всі біохімічні процеси, наприклад шумування, одержання антибіотиків [3].

Природна вода, що надходить у виробництво, піддається очищенню різними методами в залежності від характеру домішок і вимог, пропонованих до води даним виробництвом.

Основними завданнями хімії в розв'язанні сировинної проблеми є:

1. Комплексне використання сировини.

2. Повторне використання речовин:

а) регенерація -- відновлення попередніх властивостей технічних матеріалів (гуми, мастил, розчинників) після їх використання;

б) рециркуляція -- багаторазове використання різних видів сировини;

в) скрап -- вторинна металева сировина з металобрухту.

3. Застосування нових видів сировинних матеріалів, створення штучної сировини:

а) біометалургія;

б) виготовлення штучних алмазів.

4. Використання відходів як сировини.

З початку VI ст. з надр Землі видобуто 60 млрд. т вугілля, 3 млрд. т залізної руди, 30 млрд. т міді, 30 тис. т золота. Щорічно у світі видобувають 20 млрд. т нафти, 2 млрд. т газу.

Кожні 11 років потреби в матеріалах на нашій планеті подвоюються. Проте сучасні доступні нам способи розробки верхнього шару земної кори використовують лише на глибину 1 км, рідко 2 км. Земна кора має глибину 16 км, хоч і становить тільки 1/418 частину загального об'єму земної кулі. Майже 98,6 % кори складають 8 елементів: Оксиген, Силіцій, Алюміній, Ферум, Кальцій, Калій, Натрій і Магній. На долю всіх інших елементів припадає всього 1,4 % маси. Кольорові та рідкоземельні метали містяться в кількості 0,01--0,001 %. Слід наголосити, що виробництва пов'язані з розсіяними хімічними елементами є складнішими і коштовними.

З іншого боку, елементи, що є в природі, якби інтенсивно не використовувалися їх сполуки не зникають, а лише утворюють інші сполуки. Так запаси хімічних елементів на Землі залишаються постійними, і зменшуються швидкими темпами не природні ресурси взагалі, а тільки та їх частина, котра вводиться в економічний обіг на сучасному етапі розвитку.

У Японії розроблено новий папір, який можна використовувати, стерши написаний текст. Папір покритий шаром речовини, напис з якого змивається або водою, або водяною парою [7].

Американські та норвезькі фірми пропонують використовувати кремнезем, що відкладається у лушпинні рисових зерен для отримання чистого силіцію, який використовують для виготовлення напівпровідників. Лушпиння рису, який щорічно отримують у США, становить 2 % світового врожаю, а це може дати 100 тис т чистого силіцію.

У попелі бурого вугілля, на якому працюють ТЕС, міститься від 2 до 5 % Феруму. У Німеччині з 500 тис т попелу отримують 22 тис т концентрату, який містить 60 % заліза.

Отже, нині гостро постала проблема переробки вторинної сировини. Ось деякі факти:

* 120--130 т консервних банок дає змогу добути 1 т олова, для добування якого потрібно 400 т руди.

* Переробка 20 т макулатури зберігає від вирубування 1 г лісу.

* 31т побутових відходів можна добути: 50 л ацетону, горючі гази (СН4, Н2, CO), дьоготь, смолу, 160 л нафти, і ще 25 % побутових відходів використовують для виробництва добрив, 25 % для виробництва паперу.

* Світовий океан містить майже всі хімічні елементи періодичної системи. Хіміки ведуть пошук способів добування цінних елементів з морської води. Вважають, що їх понад 1 500 млрд. т, з них: натрію -- 4 млн. т; магнію -- 4 млн. т.; золота на одного мешканця планети -- 1,5 кг.

З огляду на те, що масштаб виробництв в останні десятиліття значно зріс, а саме виробництво як у нашій країні, так і за її межами розвивалося за екстенсивною схемою, виникла серйозна проблема виснаження, природних джерел сировини. Уразі збереження нинішніх темпів споживання, нафта, газ, уран-235, легкі кольорові метали (крім алюмінію) можуть бути вичерпані до середини наступного сторіччя.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать