Сравнительный анализ методики ознакомления с равенствами, неравенствами, уравнениями в традиционной школе и системе развивающего обучения
p align="left">Чтобы учащиеся не путали знаки “<” и “>”, полезно воспользоваться мнемоническим приемом: где палочки расходятся, записывают большее число, а где сходятся -- меньшее число.

2.3. Подбор величин по формулам равенства и неравенства

Основная задача данного этапа работы заключается в том, чтобы п
омочь ребенку осмыслить способы математического описания отношений между величинами с помощью схемы и формулы, а также восстановления величин, т.е. подбора предметов -- носителей величины -- по схеме или формуле. Это значит, что рассматриваются задания трех основных типов:

1) Даны предметы. Сравнивая по тому или иному признаку, дети чертят схему, показывающую отношение между величинами, а затем описывают это отношение в знаковой форме:

А А А

В В В

А>B или В<А А=В или В=А А<B или В>А

Важно, чтобы дети понимали, буквами А и В могут быть обозначены любые величины: длина (высота, ширина, толщина, глубина, периметр, и т.д.), площадь, масса, объем, количество, величина угла, а об отношении между ними можно сообщить словами: больше-меньше, выше-ниже, шире-уже, правее-левее, старше-моложе, тяжелее-легче, толще-тоньше и т.д. В математике все эти отношения описываются понятиями “больше-меньше”. Отношение “равно-неравно” может быть в быту описано словами “столько же”, “такие же”, “одинаковые”, “разные” и др., употребляя которые ребенок должен понимать, о какой величине идет речь. Так, например, когда говорят: “Купили 6 таких же стульев”, имеют в виду не их расцветку или форму, а как правило, цену, по которой приобрели эти стулья. Или в задаче сказано: “Если сшили 8 таких же платьев”, то речь идет опять же не о фасоне или расцветке ткани, а о расходе ткани на одно платье, и т.д.

2) Дана схема, описывающая отношение между величинами, нужно подобрать соответствующие величины (т.е. предметы-носители этих величин) и записать формулу.

3) Дана формула, описывающая отношение между величинами, нужно построить схему и подобрать соответствующие величины.

Отбирая материал к уроку, нельзя использовать однотипные упражнения, как это принято в традиционной школе, для закрепления и формирования навыка. В данной системе обучения, одной из задач которой является развитие и формирование способности думать, рассуждать, мыслить, нужно для уроков подбирать задания разного типа из разных блоков, что дает ребенку возможность осмысливать изменение условий, влекущее за собой изменение способа действия, и устанавливать различные связи и отношения как между величинами, включенными в задание, так и между заданиями. Это позволит в дальнейшем осознать принцип, который положен в основу придумывания заданий по типу составления “обратных” задач, когда меняются “ролями” известные и неизвестные величины.

Для выполнения каждого из данных типов заданий хорошо использовать группу из 3-4 детей: один действует с предметами, молча демонстрируя способ их сравнения, другой описывает результат сравнения с помощью схемы, третий на основании либо схемы, либо увиденного способа сравнения величин обозначает их буквами и записывает формулу (равенства или неравенства), используя знаки “=”, “>” и “<”, а четвертый выступает контролером, при этом разные группы могут работать с разными величинами.

Обсуждение итогов работы каждой группы может происходить следующим образом: каждая группа называет величину, с которой она работала. Остальные дети по схеме и формуле определяют, какие предметы могла сравнивать группа и какие ошибки при сравнении, при составлении схемы или записи формулы она могла допустить.

После такой проверки можно предложить группам, парам или отдельным детям (по выбору) придумать свои задания на сравнение или восстановление величин (с которой она работала) по схеме и формуле. Придумав задание, каждый должен выполнить свое задание так, как он хотел бы, чтобы его выполнили другие, а затем организовать “аукцион” заданий, при котором каждый выбирает понравившееся ему (из придуманных детьми) задание.

Предложенные задания можно классифицировать и по другому основанию: большинство из перечисленных заданий позволяет детям познакомиться с основными свойствами равенства и неравенств, однако названий рассматриваемых свойств детям сообщать не нужно. Главное, что дети должны понять, что иногда непосредственного сравнения величин производить не нужно, чтобы узнать, в каком отношении они находятся, т.е. вывод можно сделать, опираясь на результаты сравнения этих величин с другими.

Так, если А=В, то В=А (свойство симметричности), т.е. А сравнили с В, то нет необходимости вновь брать в руки предметы, чтобы сравнивать В и А. Если же А=В, а В=С, то нет необходимости А и С сравнивать непосредственно, так как А наверняка будет равно С, -- это свойство транзитивности равенства. Аналогично можно рассмотреть транзитивность неравенства: если А>В, а В>С, то А>С, и если А<В, а В<С, то А<С.

Тот факт, что буквой может быть обозначена любая величина, дает возможность приступить к использованию дошкольного опыта ребенка, а именно: после составления одной из формулы А>В или А<В предлагать детям подбирать вместо букв подходящие числа. Здесь слово “подходящие” относится как к самому отношению (больше или меньше), так и к дошкольному опыту ребенка, что дает возможность каждому ребенку продемонстрировать свою дошкольную подготовку и при этом быть успешным при любом объеме дошкольных умений.

Переход от букв к подходящим числам дает возможность и для обратных действий, при которых дети восстанавливают буквенные формулы с помощью числовых. Этот обратный переход можно задать следующим образом: “Дети в другом классе вместо букв в формуле подобрали подходящие числа. Вот что они записали: 7<8. Как вы думаете, какая была формула?” Дайте возможность обсудить это в группах.

В дополнение к указанным заданиям необходимо предложить выполнить задание с “ловушкой”:

- поставить двое весов: на одни весы положить одинаковые по массе предметы и на другие тоже. Записать либо М1=М2 и М3=М4, либо А=В и С=Д.

Возникает вопрос: можно ли, не взвешивая самих предметов, сравнить массы А и Д (а следовательно, и В и Д, А и С, В и С)? Если ребенок понимает свойство транзитивности, то он должен утверждать, что такого сравнения без взвешивания сделать нельзя, массы А и Д могут оказаться как одинаковыми, так и разными.

Если ребенок обращает внимание только на знаки равенства, а связи между сравниваемыми величинами не видит, то его вывод будет неверным, т.е. он будет утверждать: А=Д. Тогда и возникает вопрос: как не ошибиться? Для этого следует сделать две записи и сравнить их.

I II

А=В, а В=Д А=В, а С=Д

Сравнить

А и Д А и Д

Первая позволяет без непосредственного сравнивания сделать вывод А=Д, а вторая нет: может оказаться А>Д, А<Д, А=Д, все будет зависеть именно от отношения между А и С.

Схема даст возможность обосновать свою точку зрения, а затем вновь вернуться к равенствам, по которым можно определить, во-первых, сколько величин участвует в сравнении и, во вторых, как связаны эти величины между собой. Могут появиться следующие записи и схемы (см. приложение ).

Важно помнить, что обсуждение данного материала следует начинать не до того, как дети собираются чертить схемы, а после того, как схемы к формулам готовы.

Традиционно же все делается наоборот: сначала дети говорят, обсуждают, как выполнять задание, а потом его делают, а в этой системе обучения нужно сначала сделать (осуществить практическое действие), а затем обсуждать, как это сделали и как научить других делать то, что умеешь делать сам. Повторю, это коренное и принципиальное отличие подхода к обучению в системе РО.

Итогом работы над данной темой является составление справочника ошибок, в который как раз включаются все возможные ошибки, которые были или могут быть (!) у детей. Фиксируя их в справочнике любым удобным для детей способом, необходимо каждый раз возвращаться к вопросам о происхождении этих ошибок, а также к способам их обнаружения и исправления, что является необходимым этапом дальнейшего предупреждения этих ошибок.

2.4. Переход от неравенства к равенству и наоборот

Основная задача в том, чтобы дети смогли найти три способа уравн
ивания:

1) путем увеличения одной (меньшей) величины до ее равенства с другой (большей), т.е. с помощью сложения:

А А

В После уравнивания В С

А>В А = В + С

2) путем уменьшения одной (большей) до ее равенства с другой меньшей, т.е. с помощью вычитания:

А А

В После уравнивания В В С

А>В А - С = В

3) путем уменьшения одной и увеличения другой на одну и ту же величину:

А А

В После уравнивания С С К

А>В В К

А - К = В + К

Третий способ предполагает свободное владение первыми двумя.

Итак, два первых способа уравнивания величин являются основными.

Постановку задачи, требующей уравнивания величин, начнем со сказочного сюжета о Незнайке.

Прочитайте ту часть сказки, в которой рассказывается о том, как Винтик и Шпунтик изобрели автомобиль, который работал на газированной воде с сиропом (текст приведен в учебнике).

Результатом обсуждения возможных причин остановки машины станет постановка задачи, требующей уравнивания величин.

Нужно в бак налить столько сиропа, сколько его не хватает, чтобы бак стал полным.

Налейте воды (подкрашенной!) в две банки так, чтобы одна из них была полная (но не до самого края, чтобы можно было при необходимости долить немного воды), а вторая заполнена примерно на 1/3. Объясните, сколько сиропа должно быть и сколько осталось. Условие работы “двигателя” - полная банка.

Теперь вместе с детьми переведем эту задачу на язык математики:

Есть две неравные величины (объем воды в банках). Изобразим их, обозначив буквами (например А и В), и запишем формулу:

А

В

или А

А>В В

В сюжетной задаче о баке нам нужно узнать, сколько сиропа нужно добавить в неполную банку, чтобы машина снова могла ехать. Эта же проблема на языке математики выглядит так: нужно уровнять величины так, чтобы меньшая величина В стала равна большей величине А.

Как это можно сделать?

Сначала дети выполняют практическое действие, пытаясь в неполную банку долить воды до того же уровня, что и в первой банке, т.е. долить воды столько, сколько ее не хватало до полной банки. Проще говоря, проблема сначала выглядит так: что нужно сделать, чтобы в неполной банке воды стало столько же, сколько в полной банке? Ответ не заставит себя ждать, и дети тут же скажут, что воду нужно долить. Вы непременно выполняете практическое действие, доливая воды значительно меньше, чем нужно (или, наоборот, больше).

Если дети скажут, что этого мало, то долейте заметно больше, чем нужно (или отлейте больше, чем нужно). Именно тогда дети и смогут осмыслить то, что речь идет об определенном количестве - ни больше, ни меньше.

Возникает новая задача: какое количество воды нужно долить, чтобы стало поровну?

Невозможность восстановить прежний объем есть основание для рождения у детей о метках на обеих банках.

Поскольку дети уже умеют изображать величины, то предложите им сначала изобразить данные величины (объемы воды или количество воды) с помощью схемы, обозначив их буквами.

Затем, запишем формулы: А>B или B<A.

Теперь ответ на вопрос (сколько же нужно долить воды?) может быть показан на банках и на схеме: 1) на банках: от метки на одной банке до метки на другой или с помощью двух меток на одной банке, если вторая метка прикреплена детьми при сравнении:

Метка, которую добавили

Метка дети, на том же уровне, что

и на первой банке

На схеме эту же разность (разницу) дети могут показать так:

это тот объем воды, который нужно долить

А в банку с меньшим объемом (В).

Помните! Не банка В, а объем воды

В в банке - это В, банки то одинаковые.

Показать то, сколько нужно долить воды, - это то же самое, что узнать, на сколько одна величина больше другой или меньше другой, - А>В (на С). Чтобы узнать эту новую величину С, нужно от большей величины отнять меньшую, т.е. С = А - В.

Значит, если к величине В добавить разницу, а “настоящие математики” говорят “разность”, - величину С, равную А - В, то получится величина, равная А.

А = В + С (1) или А = В + (А - В) (2)

С

Найти эту разницу, т.е. разность между величинами и записать формулу (2) дети смогут лишь после введения знака “минус”.

Чтобы изменить отношение между величинами, т.е. из неравенства сделать равенство или, наоборот, из равенства сделать неравенство (но таких заданий мало, т.к. они являются обратными, восстанавливающими неравные величины из равных, поэтому их желательно дополнить), нужно будет одну из двух величин либо увеличить (+), либо уменьшить (-), а может быть уменьшить одну и увеличить другую, причем на сколько уменьшают одну, на столько же увеличивают другую.

Очень важно, чтобы дети понимали: когда они от неравенства переходят к равенству, то отнимать или добавлять нужно не сколько угодно, а определенное количество, соответствующее разности этих величин.

Работа с графическими и знаковыми моделями, т.е. схемой и формулой, является основным звеном в цепи решения учебной задачи.

Отношение неравенства однородных величин (А<В) и операция сложения (А+В=С) обладают следующими свойствами:

Каковы бы ни были А и В, имеет место одно и только одно из трех отношений: или А=В, или А<В, или В<А.

Если А<В и В<С, то А<С (транзитивность отношений “меньше”, “больше”).

Для любых двух величин А и В существует однозначно определенная величина С=А+В.

А+В = В+А (коммуникативность сложения).

А+(В+С) = (А+В)+С (ассоциативность сложения).

А+В >А (монотонность сложения).

Если А>В, то существует одна и только одна величина С, для которой В+С=А (возможность вычитания).

Изучение свойств отношений, о которых шла речь, открывает перед ребенком новые возможности.

2.5. Как из частей составить целое

Система РО.

Введение об отношении частей и целого понятия обусловлено, прежде всего необходим
остью обучения ребенка решению текстовых задач (прямых и косвенных) алгебраическим способом, т.е. на основе составления уравнений. Для этого ребенок должен научится изображать это отношение с помощью схем, опираясь на которые он сможет описать это особое отношение величин, не зависящее от их конкретного числового значения, в виде буквенных формул. Сформировав это понятие, дети приобретают умение выражать целое через части и части через целое:

И , где

кружками обозначено целое, а треугольником - части. Графической моделью этого отношения могут служить разные геометрические фигуры (круг, прямоугольник, треугольник и др.), но наиболее удобным и простым способом изображения этого отношения является отрезок.

Рассматривается и буквенно-графическая модель:

всем хорошо знакомые “лучики”, используемые традиционной школой для изображения состава числа.

Введение знаков для обозначения целого и частей дает ребенку возможность относительность этих понятий. Во-первых, дети должны понять, что пока над величиной не производишь никакого действия - нельзя установить, является она (величина) частью или целым, т.е. одна и та же величина может быть частью по отношению к одной величине и она же является целым по отношению к другой.

Например:

Теперь величину В разобьем еще на 2 части К и Д, по отношению к которым В - целое.

Величина В по отношению к А является частью, а по отношению к величинам К и Д является целым. Наложение знаков и , друг на друга позволяет лучше увидеть относительность этого понятия.

Итак, понятие “целое” и “часть” - это относительные понятия; основное свойство этого отношения: целое не может быть меньше части, или часть не может быть больше целого. Сравнивать части между целым и остальными частями.

Умение изображать графически и описывать с помощью формул отношение частей и целого даст возможность решать целый класс текстовых задач с буквенными данными путем составления уравнений. Решив таким образом задачу, ребенок вместо букв подбирает подходящие числа и тем самым осознает, какова область допустимых значений букв не только по отношению к выполнимости арифметического действия, но и по отношению к реальности сюжета и к собственному опыту оперирования с числом. Такой подход позволяет учителю обнаружить “слабые” места у детей и незамедлительно приступить к коррекции.

Если же задача предложена с числовыми данными, то прежде чем ее решать, необходимо “восстановить”, какой она могла быть до того, как вместо букв дети из другого класса (или автор учебника) подобрали (придумали), как им кажется, подходящие числа. Это значит, что, прежде чем приступить к решению задачи, нужно установить, говоря языком математики, входят ли числовые данные в область допустимых значений по отношению к реальности сюжета. Другими словами, дети должны оценить, соответствуют ли данные числа смыслу задачи, ее сюжету, а затем заменить числа буквами и, решив задачу, вместо букв данные числа. Восстановление исходной (буквенной формы задания) текстовой задачи ставит перед детьми новую проблему: заменять одинаковые числа одинаковыми буквами или разными? Ответ на такой вопрос с неизбежностью потребует более глубокого осмысления текста задачи и тех понятий, которые составляют ее смысл.

С помощью заданий в разделе “Проверь себя!” вы сможете составить сначала проверочную работу, а затем и контрольную (контрольная работа по данной теме подводится не сразу по завершении ее изучения, а после рассмотрения следующей!)

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать