Формирование экологических знаний при изучении темы "Кремниевая кислота. Соли кремниевой кислоты"
p align="left">выделение реакционных газов, паров продуктов расплава и удаление мелких капель, образующихся при плавлении шихты и из объема расплавленной стекломассы;

образование вредных компонентов в процессе сжигания топлива; потери теплоты -- тепловое загрязнение с отходящими газами и через стенки основных аппаратов и трубопроводов.

Многие компоненты шихты обладают летучестью в диапазоне температур образования стекла. Большой летучестью обладают соединения бора, оксиды свинца, соединения мышьяка, оксиды сурьмы, селен и его соединения, хлориды и др. Как правило, с повышением температуры варки стекла их удаление будет увеличиваться. Оно зависит также и от состава шихты. Необходимо отметить крайне вредное влияние на биосферу (выбросы) фтористых соединений, цинка, калия, мышьяка, свинца. Например, при пламенной варке хрусталя с содержанием оксида свинца 24% в атмосферу выбрасывается 10--15% оксида свинца, входящего в состав шихты; который выпадает из атмосферы вокруг стекольных заводов. Фтористые соединения улетучиваются в 5--7 раз интенсивнее, чем свинец. Большие потери бора наблюдаются при варке боросиликатных стекол. В процессе сжигания топлива достигаются высокие температуры газовых потоков, которые передают тепло расплавляемой и жидкой стекломассе. Процессы сжигания реализуются в условиях незначительного избытка воздуха, что сказывается на кинетике образующихся в процессе горения вредных компонентов.

Стекольные производства по своим масштабам несравнимы с энергетическими гигантами, но их экологические задачи аналогичны. Это позволяет обратиться к фундаментальным работам по изучению процессов образования вредных соединений в энергетике.

При сжигании топлива в стеклоагрегате, а также при движении топочных газов в пределах агрегата протекает ряд процессов, обусловленных высокими температурами, резкими перепадами температур, взаимодействием с огнеупорными, изоляционными материалами, а также взаимодействием компонентов самих продуктов сгорания в этих условиях.

Газообразные выбросы включают соединения углерода, серы и азота. Оксиды углерода являются продуктами сжигания углеводородных видов топлива. При наличии достаточного количества кислорода весь объем образующегося в процессах горения оксида углерода (II) (СО) доокисляется до оксида углерода (IV) (СО)2. Максимальное содержание С02 в газе будет при коэффициенте избытка воздуха, равном 1 (при сжигании природного газа содержание С02 составляет 9, моторного топлива -- 12, мазута -- 13--14%).

К числу особо токсичных газообразных выбросов относится диоксид серы S02 (из общего объема оксидов серы 1% приходится на триоксид серы S03). Продолжительность пребывания его в атмосфере сравнительно мала. Он принимает участие в каталитических, фотохимических и других реакциях и превращается в сульфаты, которые выпадают на землю. В соединениях с водой из S03 образуется серная кислота. Образуется S03 в результате окисления S02 кислородом воздуха. Кислотные дожди -- порождение выбросов сгоревшей серы. Время пребывания S0X в воздухе зависит от содержания в нем аммиака. В сравнительно чистом воздухе оно равно 15--20 сут. Содержание серы в углеводородном сырье различно [данные Государственного института азотной промышленности (ГИАП)]:

Суммарное содержание серы в природном газе,

мг/м3 (в пересчете на серу) 5-450

сероводород 1-25

этил- и метилмеркаптан 2-350

меркаптан С3 -С5 0,5-20

сульфиды 0,5-15

дисульфиды 0-5

серооксид углерода 0,5--30

сероугаерод 0-5

В мазуте содержание серы может достигать 3,5%.

В процессе сжигания топлива образуется ряд соединений азота с кислородом (N20;NO;N2O3;NО2;N204;N205). Обычно суммарное количество NуOx приводят к N02. Для оценки вредного воздействия выброшенных NуOx надо учитывать то, что активное пребывание NO в атмосфере исчисляется примерно 100 ч, a N20 - 4,5 годами [7].

Большая часть Nу,Ox образуется в зоне активного горения. Однако точный расчет образования NyOx в топочных устройствах и объеме печи является сложной и трудно решаемой задачей, требующей знаний и условий протекания химических реакций, гидродинамики, тепло- и массопереноса, Установлено, что NуOx при горении образуется в результате окисления азота, содержащегося в топливе, и непосредственного окисления азота воздуха. Во многом их содержание определяется коэффициентом избытка воздуха.

Объем оксидов, образующихся в процессе горения природного газа в топках котлов, зависит от организации процесса горения (при одноступенчатом сжигании содержание NyOx будет 700--1400см3/м3, при сжигании мазута 280-420 см3/м3). Организованное сжигание позволяет уменьшить объем образующегося NyOx соответственно до 60--120; 130-- 220 см3/м3.

Сжигание органических топлив сопровождается образованием канцерогенных веществ и, в частности, бензпирена, который может быть основой для синтеза других токсичных веществ.

Бензпирен образуется при температуре 700--800° С за счет протекания ряда пиролитических реакций. Химическая формула -- C20 H12, молекулярная масса равна 252, температура плавления 179 °С, кипения 480--500°С. В продуктах сгорания бензпирен присутствует в виде капель жидкости или желтых газообразных кристаллов. В отходящих газах котлов, работающих на мазуте, обнаружена зависимость содержания бензпирена от конструкций котла, горелок, коэффициента избытка воздуха и нагрузки от проектной мощности.

ПДК для канцерогенных веществ в 8,5 • 104 раз меньше, чем для NyOx.

Приведем некоторые значения ПДК, мг/м3 , отвечающие содержанию вредных веществ в воздухе (табл.2).

Таблица 2

Вещество

Разовая

Среднесуточная

Оксид азота (II)

0,085

0,085

Бензпирен

-

0,00001

Оксид ванадия

-

0,002

Сажа (копоть)

0,15

0,05

Пыль нетоксичная

0,5

0,15

Свинец

0,0003

-

Серная кислота

0,3

0,1

Диоксид серы

0,5

0,05

Оксид углерода (II)

3

1

Оксид фосфора (V)

0,15

0,05

Газообразные соединения фтора

0,02

0,005

Все это говорит о необходимости скорейшего решения проблемы сокращения вредных выбросов при варке стекла и стекловолокна, что возможно в результате сокращения или полного исключения вредных выбросов путем изменения технологии варки, конструкции печей и др. и в сочетании с глубокой очисткой дымовых газов от вредных веществ в специальных установках.

Решение задач промышленной экологии при интенсификации производства стекла, расширении ассортимента стеклоизделий и улучшении их качества требует рассматривать производство стекла как замкнутую систему, взаимодействующую с окружающей средой. В последние годы для анализа таких сложных систем используется системный подход, рассматривающий всю линию как технологическую динамическую систему, состоящую из ряда взаимосвязанных подсистем.

1.7 Драгоценные камни

Бесцветные и различно окрашенные кристаллы SiO2 - драгоценные камни.

Группа кварца - одна из самых распространенных в природе. Кварц (SiO2) встречается во множестве горных пород, где он образуется в самых разнообразных условиях. В природе кристаллы кварца встречаются самых разных размеров. Экземпляры в сотни килограммов не являются редкостью. Существует много разновидностей кварца, одинаковых с ним по кристаллической структуре, но отличаются по цвету. Из них наиболее распространены прозрачный и бесцветный горный хрусталь, лимонно-желтый цитрин, ослепительно белый и мутный молочный кварц, розовый кварц нежного пастельного тона, просвечивающий дымчато-коричневый кварц, черный от непрозрачного до слегка просвечивающего - морион и от фиолетового до нежно-сиреневого цвета аметист. В наше время на заводах выращивают кристаллы синтетического кварца, которые идут на нужды пьезо- и пиротехники, медицины и радио [8].

Просвечивающие кристаллы дымчатого кварца и морион используется в ювелирных изделиях, глиптике и мужественно - декоративных работах.

Аметист выделяется среди прочих разновидностей кварца особой красотой. Его цветовая гамма колеблется от нежно-сиреневой до темно-фиолетовой. Встречаются отдельные разновидности, сияющие пурпурным «огоньком». Особенно хорош аметист на солнечном свету. При искусственном освещении он проигрывает в яркости и красоте окраски. Аметистовые щетки используются в ювелирной промышленности для вставок в купоны, серьги, кольца, броши, и как декоративный материал для шкатулок, письменных приборов и сувениров.

Халцедон представляет собой скрытокристаллический кварц микроволокнистого строения. В зависимости от цвета, структуры и текстуры различается несколько разновидностей халцедона. Собственно Халцедон имеет цвета от серого до молочно-белого с характерным восковым или матовым блеском. Встречается халцедон в природе чаще всего в желваках или шарообразных натечных телах, особенно часто в эффузивных породах в виде миндалин. Свое название халцедон получил от древнего г. Халкедона в Малой Азии, откуда он расходился по странам Средиземноморья.

Ценные технические качества халцедона (однородность структуры, отсутствие спайности, высокая твердость, малая истираемость и т.п.) делают его незаменимым материалом для изготовления опорных камней для точных приборов, гладильных досок для бумагоделательных машин и др.

Родонит относится к триклинным пироксенам. По составу это метасиликат марганца (MnSiO3). Твердость родонита 5.5-6.5, уд. вес 3.4-3.8, спайность совершенная. Живые узоры из черных ветвистых прожилок окислов и гидроокислов марганца оживляют этот камень, создавая на нем фантастические рисунки и даже пейзажи. Родонит прекрасно поддается обработке. Будучи очень плотным, он легко режется алмазной пилой, хорошо шлифуется и отлично принимает зеркальную полировку. Его способность просвечивать в тонких пластинках, окрашенных в яркий малиново-красный цвет, используется при создании витражей. Перечень из родонита очень богат: различные шкатулки, брелоки, пресс-папье, печатки, пепельницы, вазочки, тарелочки, чаши, разрезные ножи, броши, запонки и т.д. Уральские кустари издавна обрабатывали родонит и добились изумительной техники, имитируя ягоды малины, плоды и фрукты, украшавшие шкатулки в виде накладок.

Нетрудно понять, что в будущем применение силикатов станет еще большим. Металлов в земной коре не так уж много. Углерод, который служит основой органических полимеров и пластмасс, составляет всего лишь 0,1% земной коры по массе. Производство древесины ограничено скоростью прироста леса. А использование силикатов практически не ограничено ничем. По силикатному сырью, можно сказать, мы ходим. Правда имеется существенный недостаток у силикатных изделий. Они обладают большой хрупкостью, но этот недостаток в принципе преодолим. Ведь изобрели же японцы небьющийся фарфор. А на сковородках из мелкокристаллического стекла - ситалла еще двадцать лет назад жарили картошку. Прочность таких сковородок близка к чугунным, и бьются они значительно меньше, чем обычное стекло [9].

Впрочем, о силикатах можно говорить бесконечно. Сведений о них так много, что химия силикатов давно выделилась в большую самостоятельную отрасль химического знания.

1.8 Сколько в нас кремния?

Наше обычное равнодушие к горным породам и кирпичам, которому способствует традиционное размежевание между неорганической и органической химией (а также теория витализма), обусловливает игнорирование возможностей роли кремния в живых организмах. Таким образом, 12% (или около этого) SiO2, обнаруженного в золе после сгорания соломы, длительное время считали случайным загрязнением от силикатов в почве. В действительности кремний играет более активную роль в жизни растений и животных. Ваннагат отмечает, что содержание кремния в живых организмах уменьшается с ростом «сложности» организма: отношение кремния к углероду составляет 250:1 в земной коре, 15:1 - черноземе, 1:1 - в планктоне, 1:100 в папоротнике (мужском) и 1:5000 - у млекопитающих. Может создаться впечатление, что содержание кремния в живых организмах незначительно, однако общее количество кремния, которое содержится в 1012 тоннах живых организмов на земле (если преобразовать в кварцевый песок и погрузить в вагоны), составило бы подвижной состав, который пять раз опоясал бы экватор! Такое игнорировать нельзя [11].

В организме человека содержится обычно только 10-15 г кремния, который можно было бы рассматривать как случайный остаток растворенной в воде кремниевой кислоты и вдыхаемой нами силикатной пыли. Тем не менее, большее количество кремния в волосах и ногтях наталкивает на мысль, что кремний должен быть связан с их ростом. Оказалось, что это соответствует действительности. Например, русская фармацевтическая целебная мазь, основанная на азотистом циклическом органическом эфире кремния, вызвала рост волос у молодых людей, которые лишились их вследствие хронической болезни. Аналогичный препарат, введенный морским свинкам, вызвал рост волосяного покрова у этих грызунов на 13 см.

Возможно, именно это поможет ответить на вопрос, почему человекообразные обезьяны, которые попали в неволю, теряют свой волосяной покров зимой и жадно едят глину или суглинок весной, чтобы восстановить его (возможно именно поэтому собаки иногда едят траву). Все это еще ждет исчерпывающего объяснения.

Зависимость между кремнием и формированием скелета также «окутана таинственностью», но в то же время известно, что при переломах костей происходит 50-кратное увеличение содержания кремния в соединительной ткани вокруг места перелома. Кремний служит структурным элементом вокруг соединительной ткани, связывая макромолекулы мукополисахаридов и коллагена, играет существенную роль в метаболизме многих растений и морских организмов, оказывает влияние на скорость минерализации и мешает возникновению атеросклероза [12].

Соединения кремния относятся к токсичным веществам: вдыхание мельчайших частиц пыли диоксида кремния и других соединений кремния (например, асбеста) вызывает опасную профессиональную болезнь - силикоз.

Внесение в почву кремния в виде силиката натрия повышает усвоение фосфатов из бедных ими почв.

Применение кремния во многом определяется его полупроводниковыми свойствами, что широко используется в электронике; приборы на его основе работают при температурах до 200° С; кремний используют для изготовления интегральных схем, диодов, транзисторов, солнечных батарей, фотоприемников, детекторов частиц в ядерной физике и других областях; из кремния также готовя линзы в приборах инфракрасной техники. В металлургии кремний применяют в качестве восстановителя, при производстве ферросилиция, для раскисления (удаления растворенного в расплавленных металлах кислорода); кремний является компонентом электротехнических и других сортов стали, чугунов, бронзы, силуминов; большое количество кремния и его производных расходуется на получение кремнийорганических соединений и силицидов ряда металлов; б-SiH применяют для изготовления солнечных батарей, полевых транзисторов и других изделий. Кремний в виде силикатов находит широкое применение в строительстве - цемент, кирпич, оконное стекло, фарфор и т.д., что было описано выше.

ГЛАВА II ТЕМА: «КРЕМНИЕВАЯ КИСЛОТА. СОЛИ КРЕМНИЕВОЙ КИСЛОТЫ» В ШКОЛЬНОМ КУРСЕ ХИМИИ

В школьном курсе химии достаточно хорошо освещена, собственно, химическая сторона изучаемой темы. Например, вот как она изложена в школьном учебнике для 9 классов [13].

Цель урока: познакомить учащихся со строением и способом получения кремниевой кислоты, изучить строение молекул солей кремниевой кислоты, их физические и химические свойства, изложить общие понятия о возможностях силикатной промышленности и производстве стекла, бетона и цемента.

Задачи обучения: сформировать понятие кремниевая кислота, расширить представление о способах получения, свойствах и способах применения различных типов силикатов в промышленности.

Задачи развития: продолжить развитие у учащихся основных приемов мышления (умения анализировать, сравнивать и т.д.), совершенствовать умение учащихся самостоятельно работать с дополнительной информацией.

Задачи воспитания: продолжить химическое образование школьников.

Ход урока

I. Организационный момент (1-2 мин.)

- посадка детей;

- проверка принадлежностей;

- отметка отсутствующих и т.д.

II. Опрос домашнего задания (10 мин.)

1. Что такое кремний?

2. Каково содержание его в земной коре?

3. Какие наиболее распространенные соединения кремния вы можете назвать?

4. Как в промышленности получают кремний?

5. Расскажите о физических и химических свойствах кремния.

6. Где применяют кремний?

7. Опишите химические свойства и области применения оксида кремния (IV)?

III. Изучение нового материала (20 мин.)

Строение молекулы.

Состав кремниевой кислоты условно изображают формулой H2SiO3. В действительности ее состав более сложный:

Известно много различных кремниевых кислот с общей формулой n SiO2 • m H2O.

Получение. В отличие от многих других кислот кремниевую кислоту нельзя получить гидратацией оксида кремния (IV), ибо он с водой не реагирует. Кремниевую кислоту получают при действии кислот на растворы ее солей. При этом она выпадает в виде студенистого осадка:

Na2SiO3 + 2 HCl > 2 NaCl + H2 SiO3v

2 Na+ + SiO32- + 2 H+ +2 Cl- > 2 Na+ + 2Cl + H2SiO3 v

2 H+ + SiO32- > H2SiO3 v

Физические свойства: В отличие от многих других неорганических кислот кремниевая кислота в воде практически не растворима. С водой она образует особого вида системы, называемые коллоидными растворами.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать