Инженерная геология и ее роль в строительстве
p align="left">· характер растительного покрова;

· климатические условия;

· динамическое воздействие поездной нагрузки.

В разных климатических районах при одинаковых грунтах земляного полотна и основания и других равных условиях существенное влияние на режим вечномерзлых грунтов основания оказывает их температура.

7. Приведите классификацию подземных вод. Опишите разные фазовые состояния воды в породах, а также условия залегания и движения подземных вод

В горных породах наблюдается несколько видов воды, отличающихся по физическим свойствам. В инженерной геологии принята классификация видов воды, предложенная Лебедевым (1930), которая позднее была уточнена в соответствии с новыми представлениями о природе воды и строении ее молекул. Согласно этой классификации выделяют следующие виды воды:

1. парообразная;

2. физически связанная:

-гигроскопическая (прочносвязанная);

-пленочная (рыхлосвязанная);

3. капиллярная;

4. гравитационная (свободная);

5. вода в твердом состоянии;

6. химически связанная вода в минералах:

-кристаллизационная;

-конституционная.

Пленочная вода.

Пленочная (рыхлосвязанная) вода. Пленочная вода также удерживается на частицах горных пород молекулярными силами.

Пленочная вода вместе с прочносвязанной называется молекулярной водой.

Максимальное количество молекулярной воды, удерживаваемой породой, А.Ф. Лебедев назвал максимальной молекулярная влагоемкостью. Эта влагоемкость примерно соответствует влажности нижнего предела пластичности. Средняя толщина слои пленочной воды составляет 0,1-0,5 мкм. По мере увеличения толщины пленки действие молекулярных сил уменьшается. Поэтому внешние слои пленочной воды уже доступны для литании растений.

Наличие пленочной воды в горных породах заметно на глаз так как порода при этом приобретает более темную окраску. При соприкосновении частиц породы между собой пленочная вода перемещается от частиц с более толстыми пленками к частицам с более тонкими, пока толщина пленок у обеих частая не сравняется.

Температура замерзания пленочной воды составляет -3-*- -4:С

Максимальное содержание пленочной воды, %, достигает:

в песках 1-7,

супесях 9-13

суглинках 15-23

глинах 25-40.

Пленочная вода оказывает влияние на процесс уплотнения и набухания глинистых грунтов. Известно, что для возведения земляных дамб и плотин широко применяются суглинки. Чтобы обеспечить необходимую прочность и минимальную водопроницаемость этих пород, их уплотняют катками, трамбующими мо ханизмами до получения заданной величины плотности скелета грунта -- рд. На уплотнение затрачивается значительная работа.

Исследователями были определены оптимальные условия, соблюдение которых позволяет уменьшить затраты на уплотнение пород. Установлено, что вначале при увеличении влажности значение рд возрастает. При этом плотность пород становится наибольшей. Эта влажность получила название оптимальная, При дальнейшем увеличении влажности плотность пород уменьшается. При приближении влажности пород к величине молекулярной влагоемкости возрастает смазывающее влияние пленочной воды. Это лишь способствует уплотнению грунтов.

При увеличении влажности свыше значения максимально молекулярной влагоемкости вода заполняет уже значительную часть объема пор. И в этом случае вода, заполняющая поры грунтов, препятствует уплотнению. Без удаления некоторого количества воды из порового пространства под действием катка уплотнение может не произойти. Вода при этом играет роль механического препятствия, сопротивляясь уплотнению. Вместе с тем, малая прочность суглинков при высокой влажности приводит к их выдавливанию из-под катка. Оно проявляется в виде зыби. Поэтому уплотнение суглинков необходимо производить только при оптимальной влажности.

Верховодка.

Верховодка -- это ненапорные подземные воды зоны аэрации, залегающие на небольшой глубине от поверхности Земли выше уровня грунтовых вод и имеющие ограниченное распространение.

Если в толще водопроницаемых пород залегает линза водонепроницаемых пород, то проникающие сверху осадки, достигая линзы, задерживаются, скапливаются, образуя самостоятельный водоносный горизонт -- верховодку. Верховодка обычно насыщает различные пористые породы. Она встречается также в верхней части коры выветривания скальных пород. Кроме того, верховодка распространена в районах многолетней мерзлоты, где она в зимнее время полностью перемерзает. Мощность пород, насыщенных верховодкой, обычно невелика (в среднем 14-1,0 м), местами она достигает 2-5 м.

Заметное влияние на формирование верховодки оказывает характер рельефа. Так на склонах, особенно крутых, где благоприятны условия для поверхностного стока и неудовлетворительны для инфильтрации, верховодка не формируется. Наилучшие условия для верховодки создаются на плоских водоразделах, особенно в понижениях микрорельефа (западинах, степных блюдцах и т.п.). На территориях больших городов образованию верховодки способствуют также многочисленные понижения, ямы, старые котлованы.

Ввиду незначительной мощности и распространения водоупорных линз верховодка образует лишь временное скопление воды, которое исчезает в засушливое время года. Поэтому вода верховодки используется лишь для водоснабжения отдельных хозяйств сельской местности или снабжения мелких предприятий.

Качество вод верховодки различно. В районах избыточного увлажнения они слабо минерализованы, в засушливых районах -- сильно минерализованы. На территориях городов воды верховодки, вследствие неглубокого залегания от поверхности, сильно загрязняются.

При строительных работах воды верховодки являются неблагоприятным фактором и для устранения вредного влияния верховодки применяется дренаж-осушение.

При инженерно-геологических изысканиях следует учитывать следующие особенности:

1)верховодка может образовываться даже при отсутствии в зоне аэрации каких-либо водоупорных пропластков, например, когда в толщу суглинков обильно поступает вода, но из-за их низкой водопроницаемости просачивание происходит замедленно и в верхней части толщи может образоваться верховодка, которая затем, через некоторое время, рассасывается;

2)в сухое время года верховодка не всегда обнаруживается при изысканиях, поэтому, чтобы предотвратить ее внезапное появление в период строительства, следует выполнять вероятностный инженерно-геологический прогноз ее появления, в том числе, с привлечением методов имитационного моделирования особенно на просадочных (лессовых, протаивающих многолетнемерзлых) и набухающих глинистых грунтах.

8. Сформулируйте основной закон фильтрации подземных вод. Опишите методы определения коэффициента фильтрации и расхода плоского потока подземных вод. Назовите требования к питьевой воде. Объясните причины агрессивности воды к бетону и металлу

Линейный закон фильтрации.

Движение подземных вод в пористых породах (пески, супеси, суглинки) неглубокого залегания имеет параллельно-струйчатый или ламинарный характер, т.е. без разрывов и пульсации, [плавным изменением скорости и подчиняется закону Дарси, экспериментально установленному им в 1856 г. I Основной закон фильтрации -- закон Дарси выражается формулой:

Q=KфF= KфFi,

где Q --расход воды (количество фильтрующейся воды в единицу

времени), м3/сут;

Kф-- постоянная величина для данной породы, характеризующая ее водопроницаемость; эта величина называется коэффициентом фильтрации, м/сут;

F -- площадь поперечного сечения потока, м2;

ДH -- разность уровней в двух рассматриваемых сечениях, м;

l -- длина пути фильтрации, м;

i -- гидравлический уклон.

Разделив обе части уравнения на F и назвав -- скоростью фильтрации V, м/сут, получим:

V=Кфi.

Это уравнение показывает, что по линейному закону скорость фильтрации прямо пропорциональна гидравлическому градиенту.

Если принять i = 1, то получим V=Кф, т.е. при гидравлически градиенте, равном единице, коэффициент фильтрации численно равен скорости фильтрации.

Формула позволяет определить так называемую кажущуюся скорость фильтрации. Так как вода течет лишь через часа сечения F, равную площади пор и трещин породы, то для определения действительной скорости фильтрации V, м/сут, следует учесть пористость п, выраженную в долях единицы и корректировать расчет: для песков и крупнообломочных пород Vд=V/n; для глинистых --

=V/nакт,

где nакт -- актив пористость в долях единицы.

Нелинейный закон фильтрации.

В крупнообломочных, сильно трещиноватых скальных породах неглубокого залегания при наличии крупных пустот трещин значительной протяженности движение водного потока имеет вихревой или турбулентный вид. Оно характеризуем вихреобразностыо, пульсацией и перемешиванием отдельных струй воды.

Нелинейный закон фильтрации выражается форм>~: А.А. Краснопольского:

V=Kк ,

где Кк --коэффициент, определяемый опытным путем в поле, м/сут;

i-- гидравлический уклон.

Методы определения коэффициента фильтрации.

К основным фильтрационным параметрам пород относят коэффициент фильтрации, а также коэффициенты водопроводимости, пьезопроводности и уровнепроводности.

Во всех уравнениях определения движения подземных вод основной расчетной величиной, количественно характеризующей фильтрационные свойства пород, является коэффициент фильтрации Кф м/сут. На его величину, а следовательно, и на пень водопроницаемости рыхлых пород оказывают влияние:

диаметр пор -- с уменьшением диаметра пор уменьшается коэффициент фильтрации;

количество глинистых частиц -- с увеличением количества глинистых частиц, особенно монтмориллонита, Кф уменьшается;

характер обменных катионов -- при наличии двухвалентных катионов (Са2+, Мg2+) водопроницаемость и Кф возрастают, а в присутствии одновалентных катионов (Nа+, К+) -- уменьшаются. Влияние Nа+, уменьшающее Кф суглинков в десятки и сотни раз, используется на практике для сокращения потерь воды из водохранилищ.

Определение коэффициента фильтрации методом инфилътрации из шурфа. Существует несколько способов для выполнения этой работы (методы А.К. Болдырева, Н.С. Нестерова, Н.К.Гиринского, Н.Н. Веригина, Н.Н. Биндемана и др.). Наиболее простым является метод А.К. Болдырева. Он применяется для определения Кф в грунтах, не насыщенных водой. Метод заключается в следующем. В сухом грунте вырывается шурф, не доходящий до уровня грунтовых вод. Из градуированных судов, поставленных у бровки шурфа, по трубке наливается вода на дно шурфа так, чтобы уровень воды в приямке на дне шурфа оставался все время постоянным - около 10 см. Для наблюдения за уровнем воды на дне шурфа устанавливается рейка. Через каждые 10-30 мин ведут замеры расхода воды на фильтрацию по шкалам сосудов. Опыт проводят до стабилизации расхода воды (в песках 10-20 ч, в суглинках 24-48 ч).

Определив значение установившегося (стабилизировавшаяся) расхода Qуст, м3/сут, и разделив его на площадь дна шурфа F, м2, получают среднюю скорость инфильтрации из шурфа м/сут, равную

Vуст =.

Коэффициент фильтрации определяется еще и следующий методами: 1) полевыми работами - откачками; 2) лаборатории ми методами с использованием специальных приборов; 3) эмпирическим формулам.

Определение коэффициента фильтрации откачкой воды из скважин. Определения Кф откачкой воды из скважин дают наиболее точные данные для расчета коэффициента фильтрации. Откачки разделяются на откачки из одиночных скважин и кустовые.I Откачка из одиночной скважины позволяет предварительно Вшить водообильность изучаемых пород. Произвести точный расчет коэффициента фильтрации по данным откачек из одной скважины нельзя, т.к. неизвестна величина радиуса влияния, следующий пункт входящая в расчетные формулы. Кустовые откачки проводятся на специально выбритых опытных участках при глубине залегания водоносного горизонта не более 100 м. Опытный куст состоит из центральнной (опытной) скважины и ряда наблюдательных, располагаемых по одному или нескольких лучам в случае неоднородности водоносного пласта. При четырех лучевой системе расположения скважин один луч проводится о направление потока подземных вод, второй -- против направления потока подземных вод третий и четвертый -- в направлениях, перпендикулярных к ним. При двухлучевой системе применяются один или два луча, состоящие из двух-трех наблюдательных скважин. Один из лучей проводится вниз по течению подземных вод, второй перпендикулярно направлению потока, Расстояние наблюдательных скважин от центральной рекомендуется применять равным 5; 10; 20; 40; 80 м.

Оценка качества питьевой воды. При оценке подземных вод водоснабжения пользуются ГОСТами. В этой связи питьевая вода должна быть бесцветной, прозрачной, иметь температуру от 4 до 15°С, не иметь неприятного вкуса и запаха, не содержать болезнетворных бактерий и солей тяжелых металлов. Сухой остаток в воде не должен превышать 1 г/л. жесткость должна быть менее 7 мг-экв/л. Совершенно не допускается в питьевой воде присутствие аммиака и азотистой кислоты, указывающих на фекальную загрязненность. Питьевая вода может содержать не более 0,1 мг/л свинца, 0,05 мг/л мышьяка, 1,5 мг/л фтора, 3 мг/л меди, 5 мг/л цинка, 1 мг/л железа 0,6 мг/л урана, 0,005 мг/л ртути. В воде не должны присутствовать болезнетворные бактерии брюшного тифа, холеры и другая недопустимая патогенная флора. Бактериальное загрязнение оценивается по «коли-титру», который должен быть не менее 300 мл и «коли-индексу», который должен быть не более 3.

Оценка качества технической воды. Вода, предназначен для промышленных целей, должна быть прозрачной, без запаха и мягкой. Вода для питания котлов должна иметь сухой остаток не более 0,3 г/л, содержать хлора мене 200 мг/л, жесткость должна быть не более 3 мг-экв/л.

Агрессивность подземных вод по отношению к бетону. Бетонные сооружения, находясь в соприкосновении с подземными или поверхностными водами, часто разрушаются некоторые химическими соединениями, содержащимися в воде. Это разрешающее действие естественных вод называется агрессивной способностьо вод. В целях увеличения срока службы сооружений необходимо определить степень агрессивности воды.

Сульфатная агрессивность. При повышенном содержании сульфатов происходит кристаллизация в бетоне гипса Са5О4-2Н2О с увеличением объема в 2 раза и образование «цементной бациллы», с увеличенная объема в 2,5 раза. Все это приводит к разрушению бетона.

Магнезиальная агрессивность ведет к разрушению бетона при проникновении в тело бетона воды с повышенным содержанием. При содержании иона более 2000 мг/л вода агрессивна по отношению к бетонным сооружениям в песчаных породах, а при содержании иона свыше 5000 мг/л вода становится агрессивной в суглинках,

Карбонатная (углекислая) агрессивность проявляется преимущественно в песчаных породах. Карбонатная агрессия возникает [результате действия агрессивной углекислоты СО2. В процессе взаимодействия с водой из цемента выделяется свободная известь С03, которая реагирует со свободной углекислотой СО2 Реакция идет по схеме:

СаС03 + СО2'+ Н20 = Са (НСО3)2

Образующийся бикарбонат кальция является растворимым и легко выносится из бетона. Максимальным содержанием агрессивен СО7 является 3 мг/л, при менее опасных породах -- 8,3 мг/л.

Кислородная агрессивность вызывается содержащимся в воде кислородом и проявляется преимущественно по отношению к металлическим конструкциям.

При совместном присутствии кислорода с углекислотой агрессивное действие кислорода повышается.

9. Опишите методы инженерно- геологических исследований

Аэрокосмический мониторинг состояния геотехнических систем выполняется по схеме: кадастр - динамика - при рекомендации по инженерной защите - разработка технологии инженерной защиты на всех стадиях создав функционирования сооружений.

Разработанные в НПЦ технологии включают в себя: зональную аэрофотосъемку, тепловую инфракрасную, спектральную аэрофотосъемку, перспективную аэрофотосъёмку с использованием материалов космической фотосъёмки выполнением наземных экспедиционных исследований, грамметрическая, оптико-электронная и тематическая обра! материалов съемок позволяют изготавливать кадастровые намические и прогнозно-оценочные картографические и за вые модели состояния геотехнических систем с назначением мероприятий по инженерной защите сооружений и окружая среды.

В НПЦ «Аэроизыскания» применяется современная апаратура: многозональная аэрофотосъемочная камера МСК-4 гозональный синтезирующий проектор МСП-4, аппаратура для фотограмметрической обработки и прессования изображений ППА-Б, стереокомпараторы, стереомграфы, комплекс цифровой обработки изображений С 106 ОС и другие.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать