Инженерно-геологические условия центральной части Нижнего Новгорода
p align="left">Для уржумского водоносного комплекса характерно непостоянство мощности и литологического состава водовмещающих пород, а также непостоянная и весьма слабая водообильность. Удельные дебиты не превышают 0.1 л/с.

Химический состав крайне непостоянен и зависит от характера водовмещающих пород. В нижней огипсованной части - воды сульфатные, с минерализацией 2,6-4,3 г/л. Воды верхней части комплекса имеют смешанный состав с минерализацией до 1 г/л. Мощность водосодержащих пород 65 метров. Ввиду слабой водообильности и невыдержанности водоносных прослоев по мощности и простиранию, водоносный комплекс уржумских отложений является бесперспективным.

Водоносный нижнеустьинский комплекс ().

Рассматриваемый комплекс широко распространен на территории района. Водовмещающие породы фациально и литологически очень невыдержанны и представлены мергелями, реже известняками и песчаниками.

Воды напорные, с высотой напора до 27,8 метров. Водообильность чрезвычайно неоднородная и зависит от литологии водовмещающих пород и степени их трещиноватости. Дебиты от 0.6 до 4.4 л/с, при понижениях 11,2 и 6.1 метров. Коэффициент фильтрации от 0.5 до 13.0 м/сут.

По химическому составу воды гидрокарбонатно-сульфатные магниево-кальциевые, с минерализацией 1.4-1.7 г/л.

Водоносный комплекс гидравлически тесно связан с нижнеказанским водоносным горизонтом, зачастую образуя единственную гидравлическую систему. Мощность водоносного комплекса 25 метров.

Водоносный нижнеказанский горизонт ().

Водоносный нижнеказанский горизонт повсеместно развит на междуречье рек Волги и Оки. Водовмещающие породы представлены известняками доломитизированными и доломитами различной степени трещиноватости и кавернозности. Нижним водоупором являются нижнепермские отложения, представленные плотными ангидритами и гипсами. Верхний водоупор - глины и алевролиты ужмурского горизонта. Глубина залегания кровли изменяется от 144 до 175 метров (абсолютные отметки 20-24 м). Воды напорные, величина напора от 27.2 до 47.7 м. Пьезометрический уровень устанавливается на отметках 69.6 до 75.1 метров

Водообильность неравномерная и зависит от степени трещиноватости и закарсто-ванности водовмещающих пород и характеризуется дебитами скважин от 0.4-3.12 до 51.7 л/с, при понижениях 2.05 и 4.78 метра.

Удельные дебиты изменяются от 0.005 до 0.35 л/с. Коэффициент водопроводимости от 172 м /сут. По химическому составу воды гидрокарбонатно-сульфатные магниево-кальциевые, с минерализацией от 1.0 до 2,5 г/л. Воды нижнеказанского водоносного горизонта жесткие, с общей жесткостью от 17.4 до 37.4 мг-экв/л. Область питания водоносного горизонта находится за пределами изучаемой территории. Разгрузка происходит в реки Волгу и Оку и в вышележащий верхнечетвертичный водоносный горизонт. Мощность горизонта от 14 до 20 м.

Водоупорный стерлитомакский горизонт ().

Водоупорный горизонт представлен в верхней части гипсами, в нижней части ангидритами плотными моно слоистыми, мощностью 79метров. Водоносных прослоев в этой толще не вскрыто.

Водоносный тастубский горизонт ().

Вскрыт водоносный горизонт на глубине 137 метров. Представлен доломитами плотными. Подстилается водоупором-ангидритом мощностью 2.5-7.5 метров.

Вода вскрывается на глубине 137 метров. Статический уровень наблюдается на глубине 3.5 метра. Высота напора составила 133.5 метров. Водообильность горизонта значительная: дебит при откачке составил 6.0 л/с при понижении 18.0 метров. Коэффициент фильтрации составляет м/сут.

Особенностью химического состава горизонта является предполагаемое наличие сероводорода в водах. Значительная изменчивость рН от 8.4 до 7.2 по результатам трех одновременных по отбору проб и разновременных по анализу, позволяет предположить наличие сероводорода, так как при рН большем, чем 8.4, свыше 92.7 процентов сероводорода находится в виде гидросульфита.

Минерализация воды составляет 2.3 г/л. Область питания водоносного горизонта находится за пределами изучаемой территории. Разгрузка вод осуществляется реками Волгой и Окой за пределами исследуемой территории. Мощность горизонта 23.8 метра. В г. Нижнем Новгороде и его области воды водоносного горизонта не используется.

Нижнепермско-верхнекаменноугольный водоносный комплекс ().

Имеет ограниченное распространение на территории района и вскрывается под ангидритовым водоупором небольшой мощности от 2.5 до 7.5 метров.

Водоносный комплекс в верхней части разреза представлен плотными, окремненными доломитами мощностью 66.7 метра, в нижней - известняками органогенными, кавернозными мощностью 22.5 метра. Глубина залегания кровли 220-230 метров. Воды высоконапорные, самоизливающиеся на высоте +1 м от устья скважины. Водообильность очень слабая, дебит при самоизливе составляет 0.03 л/с.

Коэффициент фильтрации составляет 0.1 м/сут. По химическому составу воды хлоридные кальциево-натриевые. Минерализация их составляет 88-89 г/л, температура воды на изливе -9-10 С. Мощность водоносного горизонта до 90 м.

1.7 Экзогенные геологические процессы

В изучаемом районе наблюдается интенсивная эрозия в пределах давних долин рек Волги и Оки. Вскрытые эрозией доломиты казанского яруса, гипсы и ангидриты нижней перми, подвергаются постоянному воздействию слабоминерализованных вод, что способствует развитию карстовых явлений. Закарстованность пород неравномерная. Полосы интенсивного карстования связаны с расположением современных и древних русел рек Оки и Волги. К востоку процессы карстования затухают вследствие залегания растворимых пород ниже базиса эрозии и погружения их под толщу татарских отложений.

Карстовые явления приурочены к карбонатным породам нижнеказанского яруса и гипсам сакмарского яруса.

Карбонатный карст развит в доломитизированных известняках нижнеказанского подъяруса в виде каверн размером от 0.1 до 0.7 см., и полостей. Каверны в доломитизированных известняках, как правило, выполнены глиной, кальцитом и гипсом. Косвенным свидетельством развития карстовых процессов в известняках казанского подъяруса является их неоднородная водообильность.

Карстующиеся известняки на всей территории перекрыты аллювиальными отложениями четвертичного периода и на большей части отложениями татарского яруса верхней перми. Воды нижнеказанского водоносного горизонта, как правило, агрессивные по отношению к карбонатным породам. Это свидетельствует о наличии процессов карстообразования на территории района.

Гипсовый карст развит в гипсах сакмарского яруса и в прослоях гипсов среди до-ломитизирующих известняков нижнеказанского подъяруса. Каверны заполнены доломитовой мукой. В гипсах сакмарского яруса встречены полости глубиной до 2.8 м. Полости полые и заполненные доломитовой мукой.

Воды нижнеказанского водоносного горизонта агрессивны по отношению к гипсам. Произведение активности сульфата кальция (Kcaso4) изменяется от 1.3 х 10 до 2.58 х 105, что свидетельствует об активных процессах закарстования.

Мощность карстующихся пород составляет 14.3-20.2 м.

Кроме карстовых процессов на территории района отмечены провалы. Связаны они с выносом песка в процессе откачки из канализационных колодцев. Глубина провалов достигает 1-1.5 м.

Оползни наиболее распространены по правому берегу Волги и Оки.

Причинами образования оползней являются: подземные и поверхностные воды, высота и крутизна склонов, подмыв берегов реками, выветривание. Оползневые явления приурочены к четвертичным образованьям и к верхней выветрелой зоне подстилающих коренных пород татарского яруса верхней перми. Большую роль в оползнеобразовании на Окско-Волжском склоне играет строение склонов и откосов. Наличие мощных перегляциальных отложений, представленных в основном суглинками, и слагающих верхнюю часть крупных склонов, а так же наличие в основании этих отложений низкопрочных глин и мергелей коренных пород атарского яруса верхней перми - все это является типичными особенностями для образования оползней сдвига и выдавливания.

Овраги приурочены в основном к правобережным склонам рек Оки и Волги. Длина оврагов достигает 100 и более метров. Врезаны овраги на 15-30 метров, реже 50-70 метров в проблематичные суглинки и коренные породы. В связи с тем, что овраги развиты в толще суглинков, склоны их в большинстве случаев крутые. Отчетливо выражена и асимметрия склонов оврагов. Овраги, пересекающие водоразделы, осложняют инженерно-геологические условия района и требуют укрепительных мероприятий.

Размыв берегов рек (боковая речная эрозия) наблюдается по рекам Оке и Волге.

Размыву подвержен правый берег этих рек. Следы эрозии наблюдаются в виде ступеней подмыва высотой 0,2-1,0 м. в основании склона. Подмыв происходит в паводковый период. В межень преобладают процессы намыва, о чем свидетельствует значительная ширина и пологие уклоны бечевника, а так же значительная мощность слагающих бечевник и дно рек аллювиально-пролювиальных отложений. Подмыв основания Окско-Волжского косогора является основным фактором, вызывающим нарушения его устойчивости.

Выветриванию подвержены, в основном, обнаженные породы татарского яруса верхней перми. Трещины выветривания уменьшают прочность массива пород, облегчают процесс оседания склона. Выветрелые породы, превратившиеся в щебнисто-глинистую массу, образуются на склонах осыпи, а насыщенные водой, они медленно оползают вниз по склону в виде оползневых потоков.

Эоловые процессы, на территории района, получили развитие в Заречной части в местах выхода на дневную поверхность аллювиальных мелкозернистых песков там, где последние перекрыты слоем суглинистых пород и не закреплены растительностью. Особенно сильно развиты эоловые процессы в районе города Дзержинска. В эоловых накоплениях выделяется ряд форм в виде бугристых песков, параболических дюн и цепочек из одиночных дюн. Все эти формы высотой от 2 до 10 м, видоизменены и в настоящее время закреплены лессами.

В пределах исследуемой территории среди отложений четвертичной системы до глубины 10-15. можно выделить следующие инженерно-геологические группы грунтов:

рыхлые связные;

рыхлые несвязные;

грунты особого состава и свойств;

грунты искусственного происхождения.

1. Рыхлые связные грунты

Эта группа грунтов объединяет супеси, суглинки четвертичных аллювиальных отложений. В основном развиты в зоне аэрации и в меньшей степени распространены в зоне полного водонасыщения, где они залегают в виде прослоев и линз среди песков различной крупности. Мощность линз и прослоев колеблется от 0,4 до 3,7 м. Суглинки мягко- и тугопластичные, непросадочные.

Рыхлые несвязные грунты представлены аллювиальными и озерно-болотными кварцевыми песками пылеватыми, мелкими и средней крупности. Пески влажные и водонасыщенные, от рыхлого до плотного сложения. Слагают зону аэрации, в основном распространены в зоне полного водонасыщения.

Грунты особого состава и свойств объединяют торф, заторфованные и заиленные суглинки, супеси и пески, распространены в северо-западной и северной частях территории. Происхождение их связано наличием болот, озер и прудов.

Грунты искусственного происхождения широко развиты и представлены грунтами, отсыпанными сухим способом и намывными. Намывные грунты развиты в пределах поймы 1-ой надпойменной террасы реки Оки и представлены песками мелкими, кварцевыми, различной плотности, однородными по составу. Мощность их до 4.0 метров. Грунты, отсыпанные сухим способом, по степени уплотнения делятся на слежавшиеся и не слежавшиеся. Мощность их от 0,3 до 10,8 метров.

Процесс морозного пучения развит благодаря наличию на территории суглинков покровных, склонных к морозному пучению.

Под действием процесса морозного пучения, для сооружений, типовым явлением стало разрушение целостности угловых частей здания. Из-за образования трещин и их дальнейшего роста, от основного объема здания отторгаются блоки фундамента, уменьшается площадь опирания и соответственно увеличивается напряжение на контакте с грунтом.

Увеличению напряжения в подошве фундаментов также может способствовать процесс перемещения фундаментных блоков под действием сил морозного пучения, в результате часть блоков выключается из работы, а оставшиеся блоки могут самоорганизовываться в наиболее приспосабливающуюся сводчатую структуру, в основании которой могут формироваться напряжения, значительно превышающие несущую способность грунтов.

Подобные деформации связываются с развитием касательных напряжений, но в реальности природа подобного процесса сложнее, что подтверждается рядом экспериментальных и теоретических данных.

Известно, что промерзание и оттаивание дисперсных пород, вызванные сезонным изменением температуры воздуха, может сопровождаться заметным перераспределением влаги. Нередко этот процесс приводит к образованию ледяных включений, что является причиной криогенного пучения.

На мой взгляд, необходимо отметить, что самым опасным процессом, на сегодняшний день, является оползневой процесс, в результате которого происходит смещение стены кремля вниз по склонам.

Причинами образования оползней являются: подземные и поверхностные воды, высота и крутизна склонов, подмыв берегов реками, выветривание. Оползневые явления приурочены к четвертичным образованьям и к верхней выветрелой зоне подстилающих коренных пород татарского яруса верхней перми. Большую роль в оползнеобразовании на Окско-Волжском склоне играет строение склонов и откосов. Наличие мощных перегляциальных отложений, представленных в основном суглинками, и слагающих верхнюю часть крупных склонов, а так же наличие в основании этих отложений низкопрочных глин и мергелей коренных пород татарского яруса верхней перми - все это является типичными особенностями для образования оползней сдвига и выдавливания.

1.8 Инженерно-геологические условия перспективного района

Перспективный участок проектируемого строительства расположен в юго-восточной части имеющейся территории на современных отложениях.

Поверхность участка ровная, характеризуется незначительным уклоном в южном направлении. Абсолютные отметки поверхности изменяются от 200 до 190 м.

Активно сжимаемая толща оснований зданий и сооружений располагается в пределах комплекса четвертичных и пермским отложений до глубины 25 м (глубина активной зоны). В связи с этим более древние отложения практического значения не имеют, и рассматриваться не будут, соответственно в геологическом строении участка можно выделить:

- средневерхнечетвертичное и современное звенья. Нерасчлененные средневерхнечетвертичные и современные проблематичные отложения (). Отложения развиты на правобережье рек Оки и Волги. В суглинках встречаются прослои разнозернистых песков с включениями гравия (кремнистых пород и обломков местных пород). Мощность этих отложений уменьшается от Оки и Волги на юг от 47.5 до 20 метров;

- татарский ярус. Нижний подъярус. Уржумский горизонт. Нижеустъинская свита (). Отложения нижеустьинской свиты имеют повсеместное распространение. Отсутствуют они лишь на отдельных участках, где нижнеказанские и нижнепермские отложения выходят на поверхность. Залегают данные отложения на размытой поверхности подстилающих пород казанского яруса. Нижнеустьинские отложения характеризуются преобладанием глинисто-алевролитовых пород, интенсивной загипсованностью всех литологических разностей, широким распространением тонкослоистых текстур. Глины и алевролиты коричневые, темно-коричневые с прослоями и гнездами гипса с подчиненными прослоями песчаников. Глины полутвердые, плотные аргиллитоподобные, в них встречаются прослои мергелей, мощность прослоев не превышает 2 м. Кровля нижнеустьинских отложений вскрывается на глубинах 20.0-35.0 метров, (абсолютные отметки 47.8-55.6 метров). Мощность от 2.7 до 36.0 метров.

В сфере взаимодействия зданий с геологической средой водоносные горизонты отсутствуют.

Участок строительства располагается на среднечетвертичной эрозионно-аккумулятивной равнине высокого правобережья рек Оки и Волги. Этот геоморфологический район занимает всю южную часть район работ и относится к краевой части Приволжской возвышенности, ограниченной с севера денудационным уступом высотой от 50 до 137 метров. Возвышенность представляет собой волнистую равнину с общим уклоном поверхности на юго-восток, развитую на лежащих красноцветных отложениях верхней перми, перекрытых толщей суглинков проблематичного генезиса, мощностью от 15 до 47 метров.

Долинами рек равнина расчленена на ряд обособленных водоразделов, шириной от 5-6 до 10-30 километров, склоны которых прорезаны оврагами и балками. Густота оврагобалочной сети в среднем составляет 0.8 километра на 1 км площади. Поперечная форма оврагов V-образная. Ширина по тальвегу изменяется от 2-3 метров. Глубина вреза изменяется от 10-15 метров до 30-70 метров. В денудационном уступе широко развиты гравитационные и оползневые формы рельефа: осыпи, оплывины и оползни.

Как было сказано выше, в денудационном уступе широко развиты гравитационные и оползневые процессы: осыпи, оплывины и оползни. Но в нашем случае участок строительства располагается на ровной поверхности вдали от оврагов. Среди опасных геологических процессов для будущих сооружений можно назвать процессы морозного пучения.

Анализ материалов инженерно-геологических изысканий, проведенных на предварительной стадии работ, показал, что на изучаемом участке, инженерно-геологические условия строительства жилого комплекса благоприятны.

Согласно СН и П 1.02.07-87 прил. 10 участок проектируемого строительства относится ко второй (средней) категории инженерно-геологических условий.

2. Проектная часть

2.1 Техническое задание

Участок проектируемого строительства располагается в 34 км от Нижнего Новгорода в юго-западном направлении.

Проектируемый объект представляет собой комплекс административных зданий, включающих в себя несколько 2-х и 3-х этажных зданий, а также одно многоэтажное (предполагаемое количество этажей - 14). Размеры перспективного участка составляют 500х500 метров.

Максимальные передаваемые нагрузки от сооружений (в нашем случае от высотного здания) будут составлять 2,2 МПа.

2.2. Задачи инженерно-геологических исследований

В нашем случае на стадии «Проект» необходимо решить ряд следующих задач:

1. Выяснение инженерно-геологического строения района предполагаемого строительства;

2. Установление неблагоприятных экзогенных геологических процессов, распространенных в районе;

3. Систематизация полученных результатов, рекомендации по использованию грунтов в качестве оснований для зданий и сооружений;

2.3 Методы инженерно-геологических исследований

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать