Оптимизация работ на нефтяном месторождении
p align="left">Во время работы УЭЦН в дозировочном насосе было обнаружено затвердевание ингибитора. Таким образом, подача ингибитора фактически не осуществлялась. При дефектации ЭЦН на рабочих органах солевых отложений не было. По скважине 1049 куста 310 также выявлено затвердевание ингибитора и засорение гибкого трубопровода.

В настоящее время специалистами фирмы «ФЛЭК» в рамках опытно-промышленных испытаний ведется оптимальный подбор ингибитора солеотложений, применимого для данной технологии обработок глубинного насосного оборудования.

3.4 Вредное влияние АСПО на работу подземного оборудования добывающих скважин

Опыт механизированной эксплуатации скважин на нефтяных месторождениях показывает, что в течение некоторого времени, исчисляемого от 1 до 4 месяцев, на поверхности промыслового оборудования образуются отложения парафина и асфальто-смолистых веществ.

Поздняя стадия разработки, на которой находится в настоящее время большинство нефтяных и газовых месторождений, в силу ряда известных причин способствует росту доли осложнений, связанных с эмульсеобразованием, АСПО и отложениями неорганических солей, имеющих место по всей технологической цепочке добычи, транспорта и подготовки нефти и газа. Подъем скважинной жидкости, представляющей собой водогазонефтяную эмульсию, от продуктивного пласта к устью, связан с изменением давления, температуры, скорости движения потока.

Качественная оценка процессов, происходящих в скважине, свидетельствует о главенствующей роли скорости движения потока. При малых скоростях происходит образование АСПО и солеотложений, при высоких скоростях - образование эмульсий и повышение вязкости продукции.

Причины и условия образования АСПО

Известны две стадии образования и роста АСПО:

1. первой является зарождение центров кристаллизации и рост кристаллов парафина непосредственно на контактирующей с нефтью поверхности;

2. на второй стадии происходит осаждение на покрытую парафином поверхность более крупных кристаллов.

При насосном способе эксплуатации давление на приеме насоса может быть меньше, чем давление насыщения нефти газом. Это может привести к выпадению парафина в приемной части насоса и на стенках эксплуатационной колонны. В колонне НКТ, выше насоса, можно выделить две зоны: - непосредственно над насосом, где давление резко возрастает и становится больше давление насыщения. Вероятность АСПО в этой зоне минимальная; - зона снижения давления до давления насыщения и ниже, где начинается интенсивное выделение парафина.

Как показывает практика, основными объектами для образования отложения парафина являются скважинные насосы, НКТ, выкидные линии от скважин, резервуары промысловых сборных пунктов. Наиболее интенсивно АСПО откладываются на внутренней поверхности НКТ.

Промысловые исследования показывают, что характер распределения парафиновых отложений в трубах различного диаметра примерно одинаков. Толщина отложений постепенно увеличивается от места начала их образования на глубине 500-900 м и достигает максимума на глубине 50 - 200 м от устья скважины, затем уменьшается до толщины 1-2 мм в области устья.

На образование АСПО оказывают существенное влияние:

· снижение давления на забое скважины и связанное с этим нарушение гидродинамического равновесия ГЖС;

· интенсивное газовыделение;

· уменьшение температуры в пласте и стволе скважины;

· изменение скорости движения ГЖС и отдельных её компонентов;

· состав углеводородов в каждой фазе смеси;

· соотношение объема фаз;

· состояние поверхности труб.

Интенсивность образования АСПО зависит от преобладания одного или нескольких факторов, которые могут изменяться во времени и глубине, поэтому количество и характер отложений не являются постоянными.

Влияние АСПО на работу подземного оборудования

Под парафиновыми соединениями, выделяющимися из нефти в добывающих скважинах в процессе их работы, понимают сложную углеводородную физико-химическую смесь, в состав которой входят различные вещества, такие как парафины, асфальтосмолистые соединения, силикагелевые смолы, масла, вода. Механические примеси.

Содержание отдельных компонентов в парафинистой массе различно и зависит от условий формирования нефтяной залежи и характеристики нефти.

Наличие парафина независимо от его количества в нефти ставит перед производственниками много технологических и технических задач, связанных с ликвидацией осложнений, вызываемых парфиноотложениями.

В процессе работы скважины возникают определённые условия, при которых интенсивность парафиноотложений возрастает:

1. снижение давления в области забоя и связанное с этим нарушение гидродинамического равновесия газожидкостной смеси (ГЖС);

2. интенсивное газовыделение;

3. уменьшение температуры в пласте и стволе скважины;

4. изменение скорости движения ГЖС;

5. состав и соотношение углеводородов в каждой фазе ГЖС.

Поскольку для нормального процесса добычи нефти проблему представляет не сам факт выпадения парафина из нефти, а его накопление на подземном оборудовании и НКТ, то и интерес вызывают условия образования АСПО в скважине. Некоторыми такими условиями являются:

· адсорбционные процессы на границе металл - парафин;

· наличие на поверхностях отложений продуктов разрушения пласта, мехпримесей, продуктов коррозии металлов и т.д.;

· шероховатость поверхности подземного оборудования (в особенности НКТ);

· скорость движения ГЖС;

· структура потока жидкости.

Практика добычи парафинистой нефти показывает, что основными местами отложений парафина являются:

- скважинные насосы;

- НКТ;

- выкидные линии отскважин;

- резервуары промысловых сборных пунктов.

Толщина отложений увеличивается постепенно от места начала их образования на глубине 500-900 м и достигает максимальной толщины на глубине 50-200 м от устья, затем уменьшается до 1-2 мм в области устья.

3.5 Технология применения греющего кабеля УЭЦН для борьбы с АСПО

Одна из проблем, серьезно затрудняющих эксплуатацию многих нефтяных месторождений Западной Сибири - образование гидрато-парафиновых пробок (ГПП) в работающих скважинах. Несмотря на интенсивные профилактические меры (скребкование, горячие промывки, использование ингибиторов парафиноотложений) полностью исключить образование ГПП, не удается, что приводит к потерям в добыче нефти, происходящим из-за остановок скважин для проведения восстановительных мероприятий.

Для возвращения скважин в рабочее состояние необходимо принимать серьезные меры по ликвидации гидрато-парафиновой пробки большой протяженности (50-300 м), на что тратятся значительные силы и средства.

Для радикального решения проблемы требуется разработка такой технологии, при которой вовсе отсутствовали бы условия для образования ГПП в скважине, необходимо создание методов, которые были бы направлены не на борьбу с последствиями образования гидрато-парафиновых пробок, а на предотвращение условий их образования.

Технология применения греющего кабеля

Одним из главных факторов способствующих выделению парафина из нефти и образования гидратов является температура. Повышение температуры нефтеводогазовой смеси в НКТ, позволяет избежать образования гидратно-парафиновых пробок. Принцип работы греющего кабеля заключается в нагреве внутреннего пространства насосно-компрессорных труб с помощью специального изолированного нагревательного кабеля, помещенного в интервал интенсивного гидрато-парафиноотложения.

Применение того или иного греющего кабеля определяется способом добычи нефти. Для скважин, оснащенных штанговым глубинным насосом (ШГН), нагреть скважинную жидкость можно с помощью нагревательного кабеля, проложенного только снаружи НКТ (рис. 3.14, а), так как внутри НКТ находится штанга. Для скважин, оснащенных электроцентробежным насосом (ЭЦН), а также фонтанных и газлифтных нагреть скважинную жидкость можно с помощью нагревательного кабеля, опускаемого в НКТ (рис. 3.14, б) через лубрикатор.

Рисунок 2.15 - Расположение нагревательных кабелей в скважине:

а) скважина с ШГН, б) скважины с ЭЦН, фонтанные и газлифтные: 1 - насосно-компрессорная труба; 2 - штанга насоса; 3 - кабель; 4 - обсадная колонна.

С помощью пакета прикладных программ ANSYS моделировалось температурное поле в поперечном сечении скважины, оно вычислялось из условия, что дебит равен нулю (рис. 3.15).

Из рисунка видно, что при мощности кабеля 100 Вт/м температура нефти в НКТ составит 47 °С, в то время как при нагреве самонесущим кабелем, расположенным в НКТ, 43 °С при мощности 24 Вт/м.

Следовательно, нагрев кабелем, расположенным внутри НКТ, требует в несколько раз меньшей мощности, чем нагрев кабелем, расположенным снаружи НКТ.

Рисунок 3.15 - Распределение температуры в поперечном сечении скважины в интервале выпадения парафина:

а) при мощности 100Вт/м для кабеля, расположенного с внешней стороны НКТ;

б) при мощности 24Вт/м для кабеля, расположенного внутри НКТ

К числу методов по борьбе с гидратно-парафиновыми пробками, применяемым на предприятии, относятся: спуск-подъем скребков, горячая обработка скважин нефтью. Данные методы требуют значительных материальных затрат и затрат трудовых ресурсов, а также не всегда оказываются эффективными, что приводит к длительным простоям скважин.

В качестве профилактических мер с 2005 года ОАО «Аганнефтегазгеология» приступило к использованию греющего кабеля, что позволило получить ощутимый экономический эффект.

На данный момент греющим кабелем оборудованы 7 скважин, являющиеся самыми проблемными в плане образования гидрато-парафиновых пробок.

Техника и оборудование для осуществления прогрева скважин греющим кабелем

Технология реализуется с помощью установки по прогреву скважин (УПС). УПС позволяет в автоматическом режиме управлять прогревом и обеспечивать защиту нагревательного элемента.

Комплект УПС состоит из:

1. Нагревательного элемента.

2. Станции управления прогревом.

3. Силового трансформатора.

Нагревательный элемент представляет собой специальный термобаростойкий, сложно изготовленный кабель, устойчивый к воздействию агрессивных сред (рис. 3.16). Рабочая часть нагревательного элемента имеет изоляционную оболочку, изготовленную из высокотемпературных материалов (фторопласт, сополимер пропилена), на которую затем накладывается броня из стальной оцинкованной проволоки в два повива. На верхний повив накладывается защитная оболочка из синтетического материала.

Рисунок 3.16 - Греющий кабель КГн12х2,5-55-90-Оа - 25,8

1-центральная жила; 2-оболочка датчиков; 3-контрольные жилы; 4-изоляция контрольных жил; 5,10 - теплопроводный заполнитель; 6,11 - обмотка; 7,12,13 - промежуточная оболочка; 8-токопроводящие жилы нагревательных элементов; 9-разделяющие жгуты; 14,15 -1-й и 2-й повив брони.

Нагревательный элемент выполняется с коаксиальными обмотками таким образом, что на центральную нагревательную жилу приходится 20% подаваемой электрической мощности, оставшиеся 80% электрической мощности выделяются на коаксиальный проводник, расположенный ближе к поверхности нагревательного элемента. С целью контроля за работой нагревательного элемента в его единую технологическую цепь монтируются датчики температуры.

Спуск нагревательного элемента в скважину проводится с помощью специализированных геофизических подъемников, снабженных необходимым оборудованием. После спуска нагревательного элемента в скважину он закрепляется и герметизируется с помощью специального крепления и сальникового устройства.

Станция управления прогревом предназначена для контроля и управления процессом прогрева жидкости в объеме лифтовых труб эксплуатационных скважин.

Станция управления прогревом включает в себя: входной рубильник, входной автоматический выключатель, устройство защитного отключения по току утечки, трехфазный тиристорный управляемый выпрямитель для бесконтактного включения / выключения, терморегуляторы для регулирования и контроля рабочего процесса, приборы измерения тока и напряжения, приборы измерения и управления температурой нагревательного элемента, индикаторы неисправностей.

Станция управления прогревом позволяет:

- осуществлять и прекращать подачу электрического тока на нагревательный элемент;

- контролировать ток, протекающий через нагревательный элемент;

- контролировать напряжение, приложенное к нагревательному элементу;

- регулировать температуру нагревательного элемента в скважине;

- прекращать подачу электрического тока или ограничивать ее при отключении станции управления работой УЭЦН;

- измерять температуру добываемой жидкости в термокармане, врезанном в нефтесборный коллектор;

- измерять и регулировать температуру внутри герметичного шкафа станции управления прогревом;

- автоматически отключать силовой пускатель (снимать напряжение с силового трансформатора и, соответственно, нагревательного элемента) от промышленной сети при наличии тока утечки, а также управлять другими устройствами с помощью контакта промежуточного реле.

Силовой трансформатор. Питание нагревательного элемента производится в зависимости от скважинных условий: либо непосредственно от промышленной сети напряжением 380В, либо при необходимости увеличения мощности прогрева через силовой трансформатор.

Во время работы установки по прогреву, станции управления накапливает и систематизирует данные температур, токов и напряжений в функции времени. Временные периоды снятия отчетов указанных параметров могут устанавливаться в произвольной форме. В дальнейшем эти параметры могут быть представлены как в графической, так и в табличной форме.

Колебания температуры в термокармане связаны с тем, что не удается полностью изолировать термодатчик от влияния температуры окружающей среды, поэтому он частично отражает и ее. При этом температура протекающей жидкости является постоянной для заданного температурного режима. Увеличение температуры в период с 14 октября связанно с тем, что был изменен температурный режим, и температуру увеличили до 17оС, путем увеличения токовых нагрузок.

На рис. 3.21 представлена схема подключения греющего кабеля к скважине, оборудованной УЭЦН.

Рисунок 3.21 - Схема подключения греющего кабеля

Опыт применения греющего кабеля в ОАО «Аганнефтегазгеология»

В ОАО «Аганнефтегазгеология» использование технологии прогрева НКТ с помощью греющего кабеля начато с 2005 года. В настоящее время данным методом защищены от образования ГПП 7 скважин.

Практика добычи нефти с помощью УЭЦН показывает, что интенсивное образование ГПП происходит лишь в начальный период (по некоторым скважинам) работы после смены УЭЦН. После 20-30 суток работы скважины ее режим стабилизируется и в дальнейшем появляется возможность бороться с образованием гидратно-парафиновых пробок обычным способом - скребкованием. Простота технологии спуска-подъема греющего кабеля позволяет оперативно извлекать его из скважины с установившемся режимом работы и спускать в скважины, где это наиболее необходимо в данный момент.

В условиях эксплуатации УЭЦН на скважинах, где приток жидкости из пласта ниже производительности УЭЦН и высокий газовый фактор, применение греющего кабеля позволяет путем установки штуцера (на устье) малого диаметра (2-3 мм) выводить скважины на стабильный режим работы, что в конечном итоге приводит к увеличению межремонтного периода.

Проведенный анализ работы скважин со спущенным греющим кабелем выявил следующие положительные результаты:

1. постоянную чистоту внутреннего пространства НКТ, фонтанной арматуры и прилегающих к ним ближних трубопроводов;

2. повышение работоспособности и увеличение срока службы УЭЦН, в том числе за счет снижения вязкости жидкости, подаваемой на поверхность;

3. непрерывность работы скважины и трубопроводов - полностью ликвидирует текущие простои скважины, связанные с образованием ГПП, намного увеличивает время между ремонтами скважин, снижение объема ремонтных работ, уменьшение количества ремонтных бригад и спецтехники;

4. полностью исключает применение других способов удаления гидратно-парафиновых отложений (СПО скребков, горячая обработка нефтью с помощью АДП и др.);

5. возможность регулировки мощности установки - выбор оптимального температурного и энергосберегающего режима работы скважины или трубопровода;

6. экологическую чистоту вокруг скважины;

7. максимальное упрощение управления работой скважины, которое сводится к приборному контролю за техническими и электрическими параметрами и компьютерной обработке этих данных;

8. увеличение среднего дебита скважины, улучшение работы пласта за счет равномерного режима добычи, уменьшение потерь нефти, повышение коэффициента эксплуатации скважин;

9. непрерывную работу скважин, находящихся в труднодоступных местах, с интервалами вечной мерзлоты, с высоковязкой и битумной нефтью.

4. Расчетный раздел

4.1 Расчет и подбор оборудования УЭЦН для скважины 1063, куст 1, пласт БВ8, Рославльского месторождения

Таблица 4.1 - Исходные данные

Показатели

Числовые значения

Глубина скважины, Н, м

1750

Забойное давление, Рзаб, МПа

14,32

Пластовое давление, Рпл, МПа

19,5

Плотность воды, св, кг/м3

1008

Плотность нефти, сн, кг/м3

820

Обводненность, nв, д. ед.

0,95

Коэффициент продуктивности, К, т/сут МПа

3,087

Газовый фактор, Г, м3/т

85

Коэффициент подачи, бп

0,75

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать