Основание и фундамент подводной части водозаборного сооружения берегового типа

Основание и фундамент подводной части водозаборного сооружения берегового типа

3

Кафедра "Геотехника и экология в строительстве"

Курсовой проект

"Основание и фундамент подводной части водозаборного сооружения берегового типа"

Выполнил:

Руководитель:

Минск 2009

Содержание

  • 1. Конструирование водозаборного сооружения берегового типа
    • 1.1 Назначение и характеристика проектируемого сооружения
    • 1.2 Расположение берегового колодца в плане
    • 1.3 Высотная привязка
    • 1.4 Водоприемная камера
    • 1.5 Компоновка сооружения
    • 2. Классификация и характеристики грунтов основания
    • 2.1 Песчаный грунт
    • 2.2 Водопроницаемость песчаного грунта
    • 2.3 Критерии, суффозионности песка
    • 2.4 Пылевато-глинистый грунт
    • 2.5 Деформационные характеристики
    • 2.6 Прочностные характеристики
    • 3. Нагрузки и воздействия
    • 3.1 Схема давлений и нагрузок
    • 3.2 Значения давлений и нагрузок
    • 3.3 Равнодействующая горизонтальных сил
    • 3.4 Равнодействующая вертикальных сил
    • 3.5 Расчетная нагрузка на основание
    • 4. Расчет основания по несущей способности
    • 4.1 Вертикальная составляющая силы предельного сопротивления
    • 4.2 Расчет фундамента на сдвиг
    • 4.3 Проверка недопущения опрокидывания
    • 5. Расчет основания по деформациям
    • 5.1. Контактное давление
    • 5.2. Абсолютная осадка фундамента
    • 5.3. Крен сооружения
    • 5.4. Горизонтальное перемещение фундамента
    • 6. Строительный котлован водозабора
    • 6.1. Особенности строительства
    • 6.2. Назначение размеров выемки
    • 6.3. Перемычки
    • 6.4. Грунтовая перемычка на пойме
    • 6.5. Двухрядная шпунтовая перемычка с грунтовой засыпкой
    • 6.6. Элементы котлована
    • 6.7. Производство работ
    • 7. Подземные противофильтрационные преграды
    • 7.1. Цементно-грунтовые секущиеся сваи (оборудование фирмы "Алимак")
    • Литература
1. Конструирование водозаборного сооружения берегового типа

1.1 Назначение и характеристика проектируемого сооружения

Тип и расположение водозаборного сооружения, через которое вода подается в насосную станцию, определяют следующие факторы:

Природные условия поймы реки;

Режим сработки уровней воды и заиления водохранилища;

Назначение водозабора;

Компоновка водоприемных секций и машинного зала;

Ледовый режим;

Наличие плавающего сора;

Плавное безотрывное обтекание боковых поверхностей.

В процессе эксплуатации сооружение должно обеспечивать:

Бесперебойную подачу воды в водоводы;

Возможность прекращения поступления воды в приемную камеру при ее осмотре, ремонте, а также в случае аварии (оборудование затворами, сороудерживающими решетками, устройствами для их очистки, а при необходимости и средствами обогрева);

Ограничение попадания в приемную секцию донных наносов, поверхностного льда, плавающих тел и топляков;

Недопущение попадания сора, шуги, льда во всасывающие трубопроводы.

1.2 Расположение берегового колодца в плане

При заглублении до 8. .12 м и строительстве открытым способом обычно отдают предпочтение прямоугольной в плане форме сооружения, как обеспечивающей наиболее удобную с позиций эксплуатации компоновку трубопроводов и оборудования. При большем заглублении переходят на цилиндрическую конструкцию подземной части, которая может быть усилена поперечной диафрагмой.

Привязка передней грани водоприемника выполняется относительно линии уреза воды в реке в меженный период (рис 1.1).

Рисунок 1.1. Расположение сооружения: 1 - бровка берега; 2 - пойма; 3 - русло; 4 - урез воды в реке; 5 - контур водозабора.

1.3 Высотная привязка

Верх сооружения должен возвышаться над максимальным уровнем (с учетом высоты волн) не менее чем на 0,15. .0,25 м.

Расположение по высоте кромки и порога водоприемного проема диктуется отметками минимального уровня воды и дна русла реки (рис.1.2). порог предотвращает попадание во входной проем влекомых по дну наносов и сора, а отметка его верха конструктивно устанавливается на 0,15. .0,25 м выше дна.

Заглубление кромки (верхней грани) под уровень воды должно быть таким, чтобы в них не попадал плавающий на поверхности сор.

Для предупреждения размыва грунта ниже подошвы фундаментной плиты ее отметка принимается для естественных оснований на глубину не менее 1,5. .2,5 м от поверхности возможного размыва дна русла в паводок и вследствие стеснения живого сечения.

Рисунок 1-2: Разрез берегового колодца.

1 - коробчатая часть со стенами из монолитного железобетона t=0,25 м; 2 - передняя стена с входными проемами; 3 - кромка; 4 - входной проем: 5 - порог; 6 - разделительная стена; 7 - задняя стена; 8 - приемная камера (8а - ее рабочий объем): 9 - габариты насоса: 10 - машинный зал; 11 - фундаментная плита из монолитного железобетона t=0,5...0,7 м.

hвх - высота входного проема секций приемной камеры; bк и hрк - соответственно ее ширина и рабочая (минимальная) глубина; bмз - ширина машинного зала в свету.

1.4 Водоприемная камера

Водозабор состоит из водоприемника (береговой колодец) и примыкающего к нему защищенного от размыва участка русла. Вода из реки в секции приемной камеры попадает через входные проемы, расположенные в передней стене. Эти отверстия оборудуются грубыми сороудерживающими решетками, плоскими скользящими щитами или укороченными задвижками. Площадь входного (водоприемного) проема Авх=bвхhвх, м2, определяют по эмпирической зависимости:

где Ксж - коэффициент, учитывающий сжатие живого сечения прутьями решетки, Ксж =1,13 - 1,27;

Qc - расчетный расход (м3) одной секции водозабора (подача насоса согласно [1] приложение 1):

n - число секций приемной камеры водозабора, n2; V - допустимая скорость воды во входном проеме (без учета требований рыбоохраны для средних и тяжелых условий забора рекомендуется принимать в пределах V = 0,2...0,6 м/с).

Qc =0,7 м3;

Ширина входного проема каждой секции bвх, м, определяется по формуле:

Из каждой секции колодца воду к патрубкам насосов подает всасывающая труба диаметром входного отверстия Dвc, м, устанавливаемым по величине расхода воды Qc, В [1] приложении 1 приводится значения величин подачи воды (м3), габаритные размеры (LxB, мм), массы агрегатов (mn, т), а также Dвc для центробежных насосов двустороннего входа типа "Д" (ЦНДВ). Ширину водоприемной камеры в свету, bк, м, назначают исходя из двух условий - конструкционного и технологического - как большее из значений величин:

bк (2...2,5) Dвc; Vmin= bк hрк= Qc t, м3

где Vmin - минимальный объем воды в секции, м3, t - время работы насоса, t15...20 с.

bк (2...2,5) Dвc=20,5=1 м,

Vmin= Qc t= 0,720=14 м3

Конструктивно принимаем ширину приемной камеры равной 1,5 м.

1.5 Компоновка сооружения

При совмещенном варианте насосы типа "Д" монтируют на фундаментной плите сооружения или опорной плите на металлической раме. При их однорядном расположении достигается компактность размещения оборудования и наименьшая ширина машинного зала (рис.1-3). Ширина прохода между агрегатами принимается не менее 1,0 м. Расстояние от коротких сторон опорных плит насосных агрегатов до разделительной стены должно быть 0,7...0,9 м, а между агрегатами и электрораспределительными щитами - 1,5...2 м.

2. Классификация и характеристики грунтов основания

В строительной практике свойства грунтов оснований оцениваются системой показателей, обусловленных содержанием отдельных фракций, плотностью минеральных частиц сs, и грунта с, естественной влажностью W (%) и пластичностью WL и Wp (%), данными фильтрационных, компрессионных и сдвиговых испытаний. Состояние грунта зависит от степени влажности Sr и его сопротивления при зондировании (песчаные толщи) или показателя текучести JL и сопротивления при зондировании (пылевато-глинистые отложения).

По группам признаков классификация грунтов включает таксономические единицы:

типы по гранулометрическому составу и числу пластичности;

виды по структуре и текстуре, степени неоднородности, пористости;

разновидности по физическим, механическим, химическим свойствам и состоянию.

В курсовом проекте за исходное принимается двухслойное основание, представленное песчаным грунтом, подстилаемым пылевато-глинистым пластом.

2.1 Песчаный грунт

Для установления вида наименования исследуемого грунта последовательно суммируются проценты содержания частиц - сначала крупнее 2 мм, затем 0,5 мм, далее 0,25 мм и 0,1 мм ([1] приложение 2). Наименование грунта принимается по первому удовлетворяющему показателю.

Далее грансостав изображается на графике (Рис.2.1), а необходимые расчеты удобно выполнять в табличной форме (таблица 2.1).

По графику на рисунке 2.1 устанавливаются значения величин характерных диаметров частиц песка (диаметры зерен, мм, меньше которых в данном грунте содержится по массе соответственно 95, 60, 50, 17, 10 и 5%).

Установления вида наименования грунта

Таблица 2.1

Гранулометрический состав (100%)

Содержание частиц

Фракции, мм

Содержание фракций по массе%

Размером d, мм

По массе, Пm,%

Более 2

2

Менее 2

98

2-1

8

Менее 1

90

1-0,5

11

Менее 0,5

79

0,5-0,25

19

Менее 0,25

60

0,25-0,1

41

Менее 0,1

19

0,1-0,05

11

Менее 0,05

8

0,05-0,01

8

Менее 0,01

0

Масса частиц крупнее 0,1 мм составляет более 50% следовательно, исследуемый грунт - песок мелкий.

Рисунок 2.1.: Интегральная кривая зернового состава в полу логарифмическом масштабе.

d95=1,5; d60=0,25; d50=0,2 (средний);

d17=0,09; d10=0,055 (действующий, эффективный);

d5=0,035;

Показатель максимальной неоднородности Umax - мера неоднородности гранулометрического состава песка - определяется по формуле:

По Umax устанавливается вид песчаного грунта ([1] приложение 2):

4 < Umax < 20 => песок среднеоднородный.

Показатель неоднородности Us определяют по формуле:

Дополнительные характеристики - плотность высушенного грунта сd, пористость n и коэффициент пористости е, а также степень влажности Sr - находят по формулам:

По значению величины Sr устанавливается разновидность песчаного грунта ([1] приложение 2): 0,5 < Sr < 0,8 - песок влажный.

Собственный вес песчаного грунта определяется по формуле: г=сg=1,89?9,81=18,54 кH/м3

Ниже уровня грунтовых вод WL частицы взвешиваются в воде и собственный вес взвешенного в воде песчаного грунта гsb, определяется зависимостью:

гsb= (гs - гw) (1-n) =9,81 (сs - сw) (1-n) =9,81 (2,61-1) (1-0,36) =10,11 кН/м3

2.2 Водопроницаемость песчаного грунта

При отсутствии данных полевых и лабораторных исследований приближенное значение коэффициента фильтрации kф, может быть определено по формуле Ганзена:

kф = Са d210 (0, 7 + 0, 03 to) =700 •0.0552 (0,7+0,03•10) =2,12 м/сут

где Са - эмпирический коэффициент чистоты и однородности песков (для чистых и однородных песков Са =1200...800, а для пылевато-глинистых и неоднородных Са =800…400), t - температура грунтовой воды 8...12°С.

2.3 Критерии, суффозионности песка

Гранулометрический состав и структура исследуемого грунта могут претерпеть изменения вследствие перемещения фильтрационным потоком в порах его отдельных частиц вплоть до их выноса (т.е. суффозионных процессов). Различают внутреннюю (мелкие частицы перемещаются только внутри грунта) и внешнюю (вынос частиц из грунта на его поверхность) механическую суффозию. Если отрыв, перемещение и вынос фильтрационным потоком частиц происходит в таком количестве, при котором нарушается прочность грунта, то суффозия называется опасной.

На контакте мелкозернистого и крупнозернистого песков под действием продольной фильтрации может происходить контактный размыв.

При оценке песчаного грунта как основания изучается возможность протекания в нем суффозионных процессов.

С этой целью определяется диаметр фильтрационных пор (ходов) dф, по формуле:

где вs - коэффициент локальности суффозии, зависящий от неравномерности распределения частиц в грунте и определяемый по формуле:

вs=1+0,05•Us=1+0,05•4,55=1,23,

Наибольший размер частиц, dc которые могут быть вынесены фильтрационным потоком из исследуемого грунта, определяется зависимостью:

Если dc окажется больше dmin = 0,01мм, то из него могут быть вынесены фильтрационным потоком частицы, крупность которых равна и меньше dc. В случае dc < dmin грунт следует считать несуффозионным.

dc > dmin - грунт - суффозионный.

2.4 Пылевато-глинистый грунт

Тип такого грунта устанавливают по числу пластичности Jp% ([1] приложение 3):

Jp=WL-Wp=24-14=10%

7< Jp <17 - исследуемый грунт - суглинок.

Если в гранулометрическом составе содержится более 50% пылеватых частиц (0,05…0,005 мм), выделяются низкопористый и пористый виды ([1] приложение 3).

По показателю текучести JL (консистенции) выделяют разновидности исследуемого грунта ([1] приложение 3):

JL= (W-Wp) / (WL-Wp) = (17-17) / (24-14) =0,3

0,25< JL <0,5 - исследуемый грунт - суглинок тугопластичный.

, г=сg=2,12 ?9,81=20,8 кH/м3

e=0,47<0,8 - грунт низкопористый.

2.5 Деформационные характеристики

Модуль общей деформации грунтов E0 определяется по данным компрессионных испытаний грунтов:

е1 - коэффициент пористости при давлении Р1, кПа равном природному в уровне подошвы FL; ас - коэффициент сжимаемости

е2 - коэффициент пористости при давлении Р2, кПа равном контактному, в - коэффициент определяемый по формуле:

н - коэффициент поперечного расширения (Пуассона) принимается равным для грунтов:

крупнообломочных - н = 0,27;

песков и супесей - н = 0,3;

суглинков - н = 0,35;

глин - н = 0,42;

При отсутствии данных испытаний значения величины Е0 принимают по табл.1 и 2 приложения 1 СНиП 2.02.01.

Компрессионные зависимости е=f (P)

Таблица 2.2

Давление Р, кПа

Коэффициент пористости е

I пласт (песок мелкий)

II пласт (суглинок тугопластичный)

50

0,562

0,389

100

0,551

0,374

200

0,530

0,363

300

0,514

0,344

400

0,432

0,327

Рисунок 2.2.: Компрессионные зависимости е=f (P)

еI1=0,562; еI2=0,541; еII1=0,389; еII2=0,369;

2.6 Прочностные характеристики

Показатели прочности - угол внутреннего трения ц и удельное сцепление с, кПа, определяют по данным испытаний грунтов в приборах плоскостного сдвига.

При отсутствии опытных данных нормативные значения величин цn и cn принимают по табл.1 и 2 приложения 1 СниП 2.02.01.

Песок мелкий:

ц=24о

с=2,8 кПа.

Суглинок тугопластичный:

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать