Повышение нефтеотдачи пластов

Повышение нефтеотдачи пластов

ВВЕДЕНИЕ

В наше время существенно увеличились масштабы добычи нефти и газа и вводятся в разработку месторождения со сложными геолого-физическими условиями, решается важнейшая проблема увеличения полноты извлечения нефти из недр.

Исследования показывают, что средняя величина коэффициента нефтеотдачи составляет в СНГ 0,37-0,4, а в США - 0,33 (по данным Торри). Нефтеотдача пластов, сложенных малопроницаемыми коллекторами, характеризующимися режимом растворенного газа, еще ниже. М.Макет считает, что объем нефти, которая может быть извлечена из пластов, достигших экономического предела эксплуатации с помощью существующих методов воздействия, составит 1/3 объема нефти оставшейся в пласте. Следовательно, запасы остаточной нефти в так называемых истощенных пластах огромны. Они представляют собой солидный резерв нефтедобывающей промышленности. Повышение коэффициента нефтеотдачи пласта со средними запасами до 0,7-0,8 равносильно открытию новых крупных месторождений. Увеличение отношения объема добываемой нефти к ее остаточным труднодоступным (или недоступным) для извлечения запасам является очень важной и сложной проблемой. Однако работы отечественных и зарубежных исследователей показали, что она может быть решена в ближайшем будущем.

Нефтеотдача - отношение количества извлеченной из пласта нефти к первоначальным ее запасам в пласте. Различают текущую и конечную нефтеотдачу. Под текущей нефтеотдачей понимают отношение количества извлеченной из пласта нефти на данный момент разработки пласта к первоначальным ее запасам. Конечная нефтеотдача - отношение количества добытой нефти к первоначальным ее запасам в конце разработки пласта. Вместо термина «нефтеотдача» употребляют также термин «коэффициент нефтеотдачи».

Паротепловая обработка призабойной зоны скважин

Величина притока и темпы извлечения нефти, производительность скважины в значительной степени зависят от состояния призабойной зоны скважины. Особое значение имеет эффективная проницаемость призабойной зоны пласта. Ввиду радиального притока жидкости в скважину, на единицу площади призабойной зоны приходится наибольшее количество поверхностно-активных компонентов. Снижение проницаемости призабойной зоны может быть обусловлена выпадением содержащихся в нефти парафина и асфальтено-смолистых веществ, а также отложением их на поверхности породы и стенках скважины. Поверхности частиц песка или других пород скелета пласта могут служить такими же центрами кристаллизации, как и шероховатые поверхности стенок насосно-компрессорных труб.

В результате адсорбции поверхностно-активных веществ нефти может изменяться молекулярная природа поверхности и произойти гидрофобизация первоначально гидрофильной породы. Опыты Ф.А. Требина показали, что явление затухания фильтрации с повышением температуры снижается, и при 60-65°С для большинства нефтей оно почти исчезает. Повышение температуры препятствует также выделению из нефти парафина и асфальтено-смолистых веществ. Указанные факты показывают, что для повышения производительности скважин тепловое воздействие на призабойную зону является одним из важных методов.

Паротепловое воздействие на призабойную зону преследует цель прогрева ограниченной площади пласта, направленного на увеличение продуктивности скважин. При этом улучшаются фильтрационные характеристики, снижается вязкость нефти, изменяйся смачиваемость горных пород, увеличивается подвижность нефти, активизируется режим растворенного газа.

Тепловое воздействие на призабойную зону может быть осуществлено путем электропрогрева или закачкой пара. Нагнетание пара в пласт производят в режиме циклической закачки его в добывающие скважины, выдержкой их в течение некоторого времени и последующего отбора продукции из этих же скважин. При данной технологии достигается прогрев нефтесодержащего пласта в призабойной зоне скважин, наряду со снижением вязкости повышается пластовое давление, происходит очистка призабойной зоны от смолистых веществ и восстановление ее проницаемости, в результате чего увеличивается приток нефти к скважинам, значительно облегчается подъем продукции по стволу скважины, увеличивается охват пласта вытеснением.

На этапе нагнетания пара в пласт он преимущественно внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта за счет противоточной капиллярной пропитки происходит активное перераспределение жидкостей: горячая вода и пар проникают в менее проницаемые пропластки, вытесняя оттуда прогретую нефть в более проницаемые слои.

Технология пароциклического воздействия на пласт заключается в последовательной реализации трех операций (этапов).

Этап 1. В добывающую скважину в течение двух-трех недель закачивается пар в объеме 30-100 т на один метр эффективной нефтенасыщенной толщины пласта. При этом происходит нагревание скелета пласта, содержащейся в нем нефти, температурное расширение всех компонентов, повышение давления в призабойной зоне. Объем закачиваемого пара должен быть тем больше, чем больше вязкость нефти в пластовых условиях и чем меньше давление в пласте.

Этап 2. После закачки пара скважину закрывают на «паропропитку» и выдерживают для конденсации пара и перераспределения насыщенности в пласте. В этот период происходит выравнивание температуры между паром, породами пласта и насыщающих его флюидов. При снижении давления в зону конденсации устремляется оттесненная от призабойной зоны пласта нефть, ставшая более подвижной в результате уменьшения вязкости при прогреве. В период конденсации пара происходит и капиллярная пропитка - в низкопроницаемых зонах нефть заменяется водой.

Этап 3. После выдержки скважину пускают на режим отбора продукции, при котором эксплуатацию ведут до предельного рентабельного дебита. По мере остывания прогретой зоны пласта в процессе эксплуатации дебит скважины постепенно уменьшается. Этот процесс сопровождается уменьшением объема горячего конденсата, что приводит к снижению давления в зоне, ранее занятой паром. Возникающая при этом депрессия является дополнительным фактором, способствующим притоку нефти в эту зону.

Эти операции (этапы) составляют один цикл. Фазы каждого цикла, а также объемы закачки пара (на 1 м эффективной толщины пласта) - величины непостоянные и могут меняться от цикла к циклу для получения максимального эффекта.

При осуществлении паротепловой обработки скважин горные породы действуют как теплообменник и способствуют тому, чтобы тепло, аккумулированное в процессе закачки пара, эффективно использовалось при фильтрации нефти из пласта в скважину. Одновременно при проведении паропрогрева происходит очистка призабойной зоны от парафина и асфальтено-смолистых отложений.

Реакция пласта на циклическую закачку пара в значительной степени зависит от коллектора. В толстых крутопадающих пластах, где преобладающим механизмом вытеснения нефти является гравитационное дренирование, может быть осуществлено 10 циклов и более. В пологих пластах, где добыча осуществляется на режиме растворенного газа, пластовая энергия быстро истощается, ограничивая число циклов обработки паром до 3-5.

На практике период нагнетания пара обычно равен одной неделе, редко - более трех недель, а период выдержки длится 1-4 сут, иногда больше, в зависимости от характеристик пласта. Последующая добыча с повышенным дебитом может длиться от 4 до 6 месяцев, после чего цикл работ повторяется.

Существенным экономическим показателем эффективности пароциклического воздействия является паронефтяной фактор, величина которого не должна превышать 2 т/т.

Прогрев ПЗС производят также с помощью спуска на забой скважины нагревательного устройства - электропечи или специальной погружной газовой горелки.

Однако электропрогревом, вследствие малой теплопроводности горных пород, не удается прогреть более или менее значительную зону, и радиус изотермы с избыточной температурой 40 °С, как показывают расчеты и исследования, едва достигает 1 м.

При закачке теплоносителя радиус зоны прогрева легко доводится до 10 - 20 м, но для этого требуются стационарные котельные установки - парогенераторы. При периодическом электропрогреве ПЗС в скважину на специальном кабеле-тросе спускают на нужную глубину электронагреватель мощностью несколько десятков кВт. Повышение мощности приводит к повышению температуры в зоне расположения нагревателя до 180 - 200 С, вызывающее образование из нефти кокса.

Для периодического прогрева ПЗС создана самоходная установка электропрогрева скважин СУЭПС-1200 на базе автомашины повышенной проходимости ЗИЛ-157Е. На машине смонтированы каротажная лебедка с барабаном и приводом от двигателя автомобиля. На барабан наматывается кабель-канат КТНГ-10 длиной 1200 м с наружным диаметром 18 мм. Кабель-канат имеет три основные токопроводящие жилы сечением по 4 мм2 и три сигнальные жилы сечением по 0,56 мм2. Скрутка жил обматывается прорезиненной лакотканью и грузонесущей оплеткой, рассчитанной на разрывное усилие кабеля в 100 кН.

Вес 1 м кабеля 8 Н. На одноосном прицепе смонтированы автотрансформатор и станция управления от установки для центробежных электронасосов, применяемых при откачке нефти из скважин.

В комплект установки СУЭПС-1200 входят три таких прицепа для обслуживания трех скважин, а также вспомогательное оборудование, состоящее из устьевого ручного подъемника, треноги блока-баланса, устьевых зажимов кабеля и другого оборудования. Нагревательный элемент имеет три U-образные трубки из красной меди диаметром 11 мм, заполненные плавленой окисью магния. В трубках расположена спираль из нихромовой проволоки (рис.21).

Сверху нагревательные трубки закрыты металлическим кожухом для защиты от механических повреждений. Нагреватель имеет наружный диаметр 112 мм и длину 2,1 м при мощности 10,5 кВт и длину 3,7 м при мощности 21 кВт. В верхней части электронагревателя монтируется термопара, подключаемая к сигнальным жилам кабеля, с помощью которой регистрируется на поверхности забойная температура и весь процесс прогрева. На устье скважины кабель-канат подключается к станции управления и автотрансформатору, который подсоединяется к промысловой низковольтной (380 В) сети.

Pис. 21- Скважинный электронагреватель:

1 - крепление кабеля; 2 - проволочный бандаж; 3 - кабель-трос; 4 - головка нагревателя; 5 - асбестовая оплетка; 6 - свинцовая заливка; 7 - нажимная гайка; 8 - клеммная полость; 9 - нагревательпые трубки.

Практика использования электропрогрева ПЗС показала, что температура на забое стабилизируется через 4 - 5 сут непрерывного прогрева. В некоторых случаях стабилизация наступает через 2,5 сут (рис. 22).

Рис. 22- Изменение температуры на забоях скважины во времени при электропрогреве: 1 - 21 кВт; 2 - 10,5 кВт; 3, 4 - 21 кВт; 5, 6, 7 - 10,5 кВт.

Кривые 1, 2 - для скважин Арланского месторождения, остальные - для Ишимбайского

Измерения температуры по стволу скважины показали, что нагретая зона распространяется примерно на 20 - 50 м вверх и на 10 - 20 м вниз от места установки электронагревателя. Это объясняется конвективным переносом теплоты в результате слабой циркуляции жидкости в колонне над нагревателем. По данным промысловых электропрогревов ПЗС в Узбекнефти после 5 -7-суточного прогрева нагревателем мощностью 10,5 кВт и последующего его отключения температура на забое падает со скоростью примерно 3 - 5 °С/ч. Поэтому пускать скважину в работу после электропрогрева необходимо без промедления.

Эффект прогрева держится примерно 3 - 4 мес. Повторные прогревы, как правило, показывают снижение эффективности.

По результатам 814 электропрогревов в Узбекнефти эффективных было 66,4 %, при этом получено 70,3 т дополнительно добытой нефти на одну успешную обработку. По результатам 558 электропрогревов в Башкирии эффективных было 64,7 %, при этом на каждую эффективную обработку получено 336 т дополнительной нефти.

В Сахалиннефти по данным 670 операций средняя эффективность составила 63 т дополнительной нефти на 1 обработку.

Тепловые методы повышения нефтеотдачи

При тепловых методах повышения нефтеотдачи пластов (ПНП) коллектор подогревается, чтобы снизить вязкость нефти и/или испарить ее. В обоих случаях нефть становится более подвижной и ее можно более эффективно направлять к добывающим скважинам. Помимо добавочного тепла в этих процессах создается движущая сила (давление). Существует два перспективных метода термического ПНП: нагнетание перегретого водяного пара и метод внутрипластового движущегося очага горения.

Вытеснение нефти перегретым паром

Водяной пар благодаря скрытой теплоте парообразования обладает значительно большим теплосодержанием, чем горячая вода. Если вода при температуре 148,9°С содержит 628 кДж/кг тепла, то насыщенный пар при той же температуре - 2742 кДж/кг, т.е. более чем в 4 раза. Но это еще не означает, что пар отдаст пласту в 4 раза больше тепла, чем-то же количество воды. Если пластовая температура равна 65°С, то 1 кг воды, нагретой до 148,9°С передает пласту 356 кДж, а 1 кг пара при тех же условиях - 2470 кДж, т.е. почти в 7 раз больше. Поэтому при помощи пара в пласт можно внести значительное количество тепла в расчете на единицу веса нагнетаемого агента. Кроме того, при одинаковых условиях 1 кг пар занимает в 25-40 раз больший объем и может вытеснить наибольший объем нефти, чем горячая вода.

При закачке пара в нефтяной пласт используют насыщенный влажный пар, представляющий собой смесь пара и горячего конденсата. Степень сухости закачиваемого в пласт пара находится в пределах 0,3-0,8. Чем выше степень сухости пара, равная отношению массы пар к массе горячей воды при одинаковом давлении и температуре, тем больше у него теплосодержание по сравнению с горячей водой. К примеру, при давлении 10 МПа и температуре 309°С у влажного пара со степенью сухости 0,6 теплосодержание почти в 1,6 раза больше, чем у горячей воды.

Процесс распространения тепла в пласте и вытеснение нефти при нагнетании в пласт водяного пара является более сложным, чем при нагнетании горячей воды. Пар нагнетают в пласты через паронагнетательные скважины, расположенные внутри контура нефтеносности, извлечение нефти производится через добывающие скважины.

Механизм извлечения нефти из пласта, при нагнетании в него перегретого пара, основывается на изменениях свойств нефти и воды, содержащихся в пласте, в результате повышения температуры. С повышением температуры вязкость нефти, ее плотность и межфазовое отношение понижаются, а упругость паров повышается, что благоприятно влияет на нефтеотдачу. Увеличению нефтеотдачи также способствуют процессы испарения углеводородов за счет снижения их парциального давления. Снижение парциального давления связано с наличием в зоне испарения паров воды. Из остаточной нефти испаряются легкие компоненты и переносятся к передней границе паровой зоны, где они снова конденсируются и растворяются в нефтяном валу, образуя оторочку растворителя, которая обеспечивает дополнительное увеличение нефти. При температуре 375°С и атмосферном давлении может дистиллироваться (перегоняться) до 10% нефти плотностью 934 кг/м3.

При паротепловом воздействии (ПТВ) в пласте образуются три характерные зоны: зона вытеснения нефти паром; зона горячего конденсата, где реализуется механизм вытеснения нефти водой в неизотермических условиях, и зона, не охваченная тепловым воздействием, где происходит вытеснение нефти водой пластовой температуры (рис.31). Указанные зоны различаются по температуре, распределению насыщенности жидкости и механизму вытеснения нефти из пласта. Процессы, происходящие в каждой из этих зон, испытывают взаимное влияние.

Рис.31- Схема распределения температуры в пласте при нагнетании в него водяного пара. Зоны: 1 - перегретого пара: 2 - насыщенного пара; 3 - горячего конденсата: 4 - остывшего конденсата.

Нагрев пласта вначале происходит за счет теплоты прогрева. При этом температура нагнетаемого перегретого пара вблизи нагнетательной скважины снижается (в зоне 1) до температуры насыщенного пара (т.е. до точки кипения воды при пластовом). На прогрев пласта (в зоне 2) расходуется скрытая теплота парообразования и далее пар конденсируется. В этой зоне температура пароводяной смеси и пласта будут приблизительно постоянны и равны температуре насыщенного пара (зависящей от давления), пока используется вся скрытая теплота парообразования. Основным фактором увеличения нефтеотдачи здесь является испарение (дистилляция) легких фракций остаточной нефти, образованной после вытеснения горячей водой. Размеры ее при практически приемлемых объемах закачки небольшие. В зоне 3 пласт нагревается за счет теплоты горячей воды (конденсата) до тех пор, пока температура ее не упадет до начальной температуры пласта. В зоне 4 температура пласта снижается до начальной.

Нефть вытесняется остывшим конденсатом при пластовой температуре. Часть теплоты, как и в случае нагнетания горячей воды, расходуется через кровлю и подошву пласта. Кроме того, на распределение температуры влияет изменение пластового давления по мере удаления теплоносителя от нагнетательной скважины. В соответствии с распределением температуры нефть подвергается воздействию остывшей воды, горячего конденсата, насыщенного и перегретого пара. Увеличению нефтеотдачи также способствуют процессы испарения под действием пара нагретой нефти и фильтрации части углеводородов в парообразном состоянии. В холодной зоне пары углеводородов конденсируются, обогащая нефть легкими компонентами и вытесняя ее как растворитель.

Механизм вытеснения и характер распределения температуры в пласте удобно рассматривать и в обратном к вытеснению направлении (рис.32).

Рис.32 - Схема вытеснения нефти паром.

Условные обозначения: а - пар; б - вода; в - нефть

В зоне 4 фильтруется безводная нефть при пластовой температуре.

В зоне 3 температура пласта тоже равна начальной. Вытеснение нефти водой происходит при пластовой температуре. Насыщенность воды в направлении вытеснения постепенно уменьшается до значения насыщенности связанной водой.

Зона 2 - это зона горячей воды. Температура в этой зоне снижается от температуры пара до начальной пластовой. В ней фильтруется горячая вода, нагретая нефть, обогащенная легкими фракциями углеводорода, которые образовались из остаточной нефти в зоне пара и вытесняются из зоны конденсации. Здесь вытеснение нагретой нефти производится горячей водой. В этой зоне повышение коэффициента нефтеотдачи достигается за счет снижения вязкости нефти, повышения ее подвижности, усиления капиллярных эффектов.

На участке зоны 2, примыкающей к зоне 1, температура несколько ниже, чем температура парообразования. В этой зоне, размеры которой небольшие, пары воды и газообразные углеводородные фракции из-за охлаждения компенсируются и вытесняются горячей водой по направлению к добывающим скважинам.

Зоны: 1 - насыщенного пара; 2 - вытеснение нефти горячей водой; 3 - вытеснение нефти водой при пластовой температуре; 4 - фильтрация нефти при начальных условиях.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать