Разработка Арланского месторождения
p align="left">На Арланском месторождении продуктивным является 4 толщи - известняки турнейского яруса, пласты песчаники ТТНК, корбанатные коллекторы московского яруса и пласт известняка верейского горизонта.

Продуктивность этих толщ, равно как и запасы, сильно различаются. Если ТТНК исследована достаточно полно, то остальные объекты - в гораздо меньшей степени. Если исключить небольшую залежь в верейском горизонте Новохазинской площади, то залежи турнейского яруса меньше всего подготовлены к разработке. Степень изученности объектов определялась их промышленной ценностью.

На стадии поисково-разведочных работ производили оперативную разведку запасов в пределах разведанной площади. Как правило, при этих оценках использовали суммарную толщину всех пластов, а подсчетные параметры определялись как средние, без деления по пластам. Такой прием в те годы был обычным и больших сомнений не вызывал.

В связи с тем, что обширную территорию месторождения разведывали по отдельным участкам, находящимся на значительном расстоянии друг от друга, а также поэтапной разведку отдельных площадей со значительным различием во времени, первоначально считалось, что открывали самостоятельные месторождения: Арланское, Вятское, Николо - березовское, Уртаульское, Новохазинское. Потому первые подсчеты запасов производили по месторождениям, не связанных друг с другом. В связи с недостатком первичной информации некоторые параметры принимали по аналогии или ориентировочно.

На дату пересчета существенно увеличилась информация о коллекторах и флюидах. Так, пластовые нефти исследованы по 213 пробам, поверхностные - по 2357 из 1878 скважин, пористость и проницаемость определена почти по 6000 образцов керна.

Увеличение объема исследования керна и флюидов существенно изменили представление о геологическом строение продуктивной толщи нижнего карбона, был накоплен богатый материал по разработке месторождения. Естественно, что результаты пересчета запасов стали значительно точнее.

Подсчет осуществляли раздельно по пластам. В санитарных зонах населенных пунктов, водозабора, а также в лесоохранной зоне выделены за балансовые запасы.

Нижний предел пористости песчаников ТТНК определялся различными методами:

- по зависимости пористость - при минимальной толщине песчаников 0,8 метров пористость составляет 15%;

- по результатам раздельного опробования - при толщине 0,4-0,8 метров пористость составляет 14,4%;

- по результатам обработке материалов геофизических исследований скважин - нижний предел пористости 14-16%;

- по приемистости нагнетательных скважин - при минимальной толщине работающих пластов 1-1,2 метров, нижний предел составляет 14-16%;

- по скважинам, пробуренным на не фильтрующимся растворе, при минимальной нефтенасыщенности 30-33% нижний предел -15%;

- по связи пористость - проницаемость.

Нефтенасыщенность определялась в основном по зависимости начальная водонасыщенность - пористость и по геофизическим данным. Кроме того, использованы керновые данные из 9 скважин, пробуренных со вскрытием продуктивных пластов раствором на нефтяной основе.

Средние значения нефтенасыщенности составили: на Николо - Березовской площади -82, на Вятской - 83, на Новохазинской - 85 и на Арланской - 87%. Следует отметить, что априорное увеличение объемов нефтенасыщенных пород в целом по пластам и площадям в последствии создало большие трудности при анализе и проектировании разработки площадей, особенно, отдельных блоков и участков, а также при переводе запасов в более высокие категории, потому что в каждом случае приходилось производить пересчеты с внесением поправок.

При определении нефтенасыщенности, как правило, используются материалы ГИС. В свою очередь их интерпретация основана на петрофизических параметрах керна.

Нефтенасыщенность коллекторов ТТНК исследовали в лабораторных условиях В.М. Бирезин, К.Я. Коробов и др. по остаточной водонасыщенности образцов керна. Результаты исследования остаточной водонасыщенности показали, что существует закономерная зависимость этого параметра от пористости коллекторов. В последние годы К.Я. Коробов установил, что эта зависимость определяется не только пористостью коллекторов, но и их литолого-коллекторскими свойствами.

2 Технологическая часть

2.1 Текущее состояние разработки и динамика основных технологических показателей месторождения

Арланская площадь введена в разработку в 1958 г. С 1959-го объемы эксплуатационного бурения постепенно наращивались. В 1964 г. число скважин, выходящих из бурения, достигло 157. До 1965 г. разбуривание осуществлялось по принципиальной схеме (1959) и проекту разработки (1961). После 1965 г. -- по утвержденной Генеральной схеме, в основу которой с небольшими изменениями были приняты технологические решения проекта разработки 1961 г. Несколько изменены были границы площади, часть территории отнесена к Николо-Березовской. Все пласты ТТНК были объединены для совместной эксплуатации; обоснована меньшая величина нефтеизвлечения; смещены некоторые линии разрезания.

Разработка залежей ТТНК Арланской площади характеризуется несколькими особенностями.

1. Через 12 лет после начала эксплуатации площади добыча нефти достигла своего максимального уровня и составила в 1970 г. 5332,9 тыс.т. Начиная с 1971-го добыча постоянно снижается и в 1993-м составила 39% от максимальной. В отличие от девонских залежей маловязких нефтей (Туймазинское, Шкаповское и др.), на которых падение уровня добычи достигало 27% за год, темп падения добычи на Арланской существенно меньший и составил в первый год снижения (1971)всего 1,2%. Подобная картина наблюдалась и по остальным площадям месторождения.

2. Фонд действующих скважин растет длительное время вплоть до заключительной стадии, достигнув максимума в 1989 г. (1484 ед.). К этому времени было отобрано 86,5% НИЗ, а обводненность составила 94,7% (весовых).

Фонд нагнетательных скважин наращивался в соответствии с фондом добывающих до 1987 г. и составил 310 ед. Поэтому отношение числа добывающих скважин к числу нагнетательных во времени изменялось незначительно. Так, в 1968--1989, т. е. в течение более чем 20 лет, это соотношение колебалось в пределах 4,5--5,0 и лишь в последние годы увеличилось до 7,2. Постоянство этого параметра во времени, объясняется двумя причинами. Во-первых, одновременно с увеличением числа добывающих скважин пропорционально увеличивалось и число нагнетательных. Во-вторых, такое соотношение в значительной степени поддерживалось целенаправленно, т. к. было принято наиболее эффективным соотношение 3 -- 4. Рост общего числа пробуренных скважин на Арланской площади происходил и после достижения максимума фонда действующих добывающих и нагнетательных скважин, т. к. бурение, хотя и в меньших объемах, продолжается и сейчас. Уменьшение числа действующих добывающих и нагнетательных на фоне увеличения числа пробуренных скважин происходит за счет их выбытия в категорию прочих (ликвидированных, пьезометрических, контрольных и др.). Скважины этих категорий составляли в 1992 г. 406 ед., за 5 последних лет их число возросло более чем вдвое. Такая динамика связана с массовым выводом скважин из эксплуатации из-за полного их обводнения или же по техническим причинам. Темпы вывода скважин из эксплуатации, по всей видимости, будут нарастать, т. к. осталось отобрать всего 6,5% НИЗ, а обводненность продукции в целом по площади составила 95%.

3. Отбор жидкости по площади постоянно наращивался и достиг своего максимума в 1990 г. (51,4 млн.м3 в пластовых условиях). В последние 3 года наметилась тенденция устойчивого снижения отбора жидкости на фоне незначительного роста обводненности (на 1,2%). За эти годы отбор жидкости снижен с 51,4 до 47,6 млн.м3, т. е. на 7,4%. Сравнение динамики фонда добывающих скважин и отбора жидкости показывает, что снижение отбора жидкости происходит по двум причинам: уменьшение действующих добывающих скважин (на 3%) и снижение дебитов жидкости в них (4,2%). Для Арланской площади характерно длительное наращивание фонда скважин, дебита жидкости и, следовательно, отбора жидкости до поздней стадии разработки. Максимальная добыча жидкости достигнута при отборе 88,5% НИЗ и обводненности 95,2%.

4. Темпы отбора от начальных извлекаемых запасов на площади достигали в максимуме 3,9%. После максимального уровня они снижались пропорционально годовой добыче нефти и составили в 1992 г. 1,5% от НИЗ. Для залежей высоковязкой нефти в целом характерны меньшие темпы отбора запасов, чем из девонских залежей с маловязкими нефтями. Так, по Туймазинскому месторождению отбор в максимуме достигал 4,6% НИЗ, по другим месторождениям он был еще выше, хотя плотность сетки скважин Арланской площади и Туймазинского месторождения сопоставимы.

Хотя разработка залежей ТТНК Арланской площади осуществлялась с заводнением пластов, для этого объекта специфично не полное восполнение отбираемых объемов закачкой воды. Так, суммарная компенсация отборов закачкой воды составляет всего 88,6%. В отдельные годы компенсировалось менее 75% отбора. Не смотря на это пластовые давления поддерживались на достаточно высоком уровне. Такая специфика объясняется активным напором краевых вод в VI пласте. В то же время активность напора, видимо, была недостаточной для поддержания нарастающих объемов отбора жидкости. Этим фактором, на наш взгляд, можно объяснить увеличение приемистости нагнетательных скважин при практически постоянном соотношении числа добывающих и нагнетательных скважин. Так, приемистость от 498 (1976) выросла до 479 м3/сутки(1989). За этот период времени дебит жидкости в среднем вырос от 46,7 до 96,7 м3/сутки, т. е. в 2,07 раза при росте приемистости в 2,4. Предположение, что разница отражает увеличение отбора жидкости из VI пласта, подтверждается опережающей выработкой его запасов.

2.2 Обводнение скважин и пластов

Процесс обводнения продукции скважин Арланского месторождения характеризуется коротким периодом безводной эксплуатации с быстрым ростом содержания воды. После достижения 90%, обводненность увеличивается медленно (рис. 146). В целом по ТТНК месторождения при обводненности более 90% предстоит отобрать треть запасов.

Вследствие такого характера обводнения отбирается большой объем попутной воды. Так, если по месторождению до обводнения на 90% ВНФ составил 2,5 м3/м3 (в пластовых условиях), то для того, чтобы отобрать оставшуюся треть запасов, необходимо будет отбирать более 5 м3/м3 попутной воды. Возможно, фактический отбор будет несколько меньше за счет более раннего отключения скважин по экономическим причинам, но этот предел в настоящее время прогнозировать сложно.

В настоящее время длительная эксплуатация скважин при столь высокой обводненности во многих случаях неоправданна. Особенно это относится к скважинам, эксплуатирующим несколько разнородных пластов. Очевидно, что во многих из таких скважин наиболее высокопродуктивные пласты полностью обводнились, а небольшое количество нефти поступает из маломощных. В таких скважинах было бы целесообразно отключить выработанные пласты. Однако эта работа производится на месторождении в недостаточных объемах. Кроме того, отключение высокопродуктивных обводнившихся пластов, расположенных в кровельной части разреза (пласты II и III), малоэффективно и технически довольно сложно. Не решены и вопросы исследований на предмет определения обводнившихся пластов. Для Арланского месторождения характерен быстрый рост обводненности в скважинах с подошвенной водой. Особенно часто это отмечается в мощных II и VI пластах. Основной причиной такого обводнения является косая слоистость песчаников и низкая анизотропность, вследствие чего происходит конусообразование. В ряде скважин бурением была вскрыта только верхняя часть пласта VI (2-- 3 м). Однако конусообразование в таких скважинах происходило с той же интенсивностью, что и в скважинах с обычной конструкцией. Перфорация колонн на значительном расстоянии от ВНК также оказалась неэффективной. Довольно часто наблюдалось и послойное обводнение пропласт-ков, хотя, в основном, в монолитных пластах обводнение происходило по нижней части пластов. Действенным методом контроля за обводнением пластов в условиях высоковязких нефтей Арланского месторождения оказался импульсный нейтрон-нейтронный метод, который позволял получать однозначные результаты даже в перфорированных интервалах.

2.3 Исследование пластов и продуктивности скважин

Исследования пластов и продуктивных скважин на Арланской площади показали, что значительные запасы находятся в маломощных (1-3 м) низкопроницаемых пластов. Первоночально они были разбурены по сетке 500x500м, после чего было решено использовать сетку 400x400 м. Все попытки интенсифицировать выработку запасов из таких пластов при такой сетке оказались безрезультатными, т.к. закачка воды в эти пласты ни очаговой, ни площадной модификации оказались невозможны.

2.4 Расчет нефтеотдачи в зависимости от упругих свойств жидкости и породы

Цель работы: Научиться определять некфтеотдачу в зависимости от у
пругих свойств жидкости и породы.

Дано:

F = 1200 га;

h = 12 м;

m = 0,22;

S = 20%;

Pпл = 180 атм;

Рнас = 80 атм;

tпл = 54,5С;

P = 5*106 м3;

bн = 1,02; b'н = 1,026.

Решение:

Коэффициент сжимаемости нефти:

на 1 атм.;

коэффициент сжимаемости породы:

на 1 атм.;

коэффициент упругоемкости залежи:

на 1 атм.

Искомый запас нефти:

м3.

Общий нормальный объем нефти в залежи:

м3.

Процент нефтеотдачи вследствие упругих свойств среды:

общего запаса нефти.

В результате внедрения воды из законченной области получено:

м3.

Коэффициент упругоемкости для указанной законченной обводненной части:

.

Средневзвешенное давление внутри рассматриваемой кольцевой площади:

атм., т.е. на 50% от ;

Количество воды, которое поступит в поры пласта:

м3.

В пласт поступит следующий объем жидкости:

4522*103 - 2105*103 = 2417*103 м3.

3 Проектная часть

3.1 Анализ системы и технология разработки

Анализ разработки уникального по своей характеристике Арланского месторождения позволяет оценить положенные в основу проектирования принципы разработки и эффективность реализуемой системы разработки.

До открытия Арланского месторождения опыт разработки залежей высоковязкой нефти имелся только по небольшому числу месторождений Самарской области и Александровской площади Туймазинского месторождения. Проектирование разработки Арланского месторождения, имеющего огромные размеры, сложное геологическое строение продуктивных пластов, высокую вязкость нефти, представляло мало изученную проблему. Не все проектные решения оказались правильными.

Выработка запасов из пластов многопластового объекта, как правило, происходит разновременно. При отключении одного из них меняется состав объекта разработки.

Практика разработки многопластовых объектов на Арланском месторождении показывает, что выработка запасов из пластов промежуточной пачки происходит значительно хуже и меньшими темпами. Кроме того, объемы отбираемой попутно с нефтью воды при совместной разработке разнородных пластов резко возрастают. Самым же главным недостатком такого объекта разработки является нерегулируемость процесса разработки пластов небольшой толщины.

Сложности выработки запасов возрастают с ростом числа объединяемых в одном объекте разработки пластов и их неоднородности.

На Арланском месторождении условия разработки осложнены, т. к. число пластов достигает восьми, и, кроме того, в разрезе в основном присутствуют два наиболее продуктивных пласта -- II пласт в верхней и VI пласт в нижней части ТТНК.

С целью количественной оценки обоснованности совместной разработки пластов по Арланскому месторождению был выполнен анализ в следующей постановке. Все разрезы были сгруппированы по признаку однородности пластов. Так как фильтрационные свойства пластов количественно трудно оценить с учетом наличия статистической связи между толщиной и проницаемостью, было принято, что равные толщины означают и равную гидропроводность. Основными считались пласты большей толщины. Как правило, это отражало реальную картину; там, где пласты были равными по толщине (а других пластов не было), считалось, что в разрезе неоднородность отсутствует.

3.2 Сравнительный анализ результатов и особенности разработки нефтяных залежей

1. В зависимости от числа пластов в объекте (разрезе) доля работающих пластов при одной и той же толщине пласта неодинакова. С увеличением числа пластов доля работающих при одной и той же толщине уменьшается.

2. Особенно заметно уменьшается вероятность освоения пластов небольшой толщины. Например, при толщине пласта 2 м наличие приемистости отмечается: при двух пластах -- в 65, при трех -- в 55, при четырех -- в 45, при пяти -- в 35 и шести пластах -- в 30% пластов, т. е. вероятность освоения пластов определяется не только их толщиной, но и их числом, т. е. расчлененностью разрезов. Чем больше пластов объединяется в одном объекте, тем ниже вероятность освоения всех, и в особенности малых по толщине пластов.

Был также выполнен анализ с целью выяснения возможного влияния расчлененности разрезов в нагнетательных скважинах на величину приемистости пластов.

Как следует из результатов анализа, приемистость одинаковых по толщине пластов в нагнетательных скважинах зависит от числа пластов в разрезе. При этом наибольшие потери характерны для пластов небольшой толщины. Их приемистость в многопластовых разрезах снижается в 4 раза.

В целом, без учета толщины пластов, а лишь с учетом их числа в разрезе объем закачки воды (относительно раздельно эксплуатируемого пласта) составляет: для двух пластов -- 0,71, для трех пластов -- 0,57 и для четырех пластов -- 0,42.

Недобор объемов закачки из-за отсутствия приемистости составил 22% (в целом по месторождению).

Таким образом, эффективность системы заводнения Арланского месторождения могла быть в 1,5 раза выше, если бы закачка велась раздельно по каждому пласту.

Необходимо отметить, что в первых технологических схемах и проектах предусматривалась раздельная закачка воды в пласты верхней и нижней пачек.

Это решение было реализовано путем освоения нагнетательных скважин в разрежающих рядах на каждую пачку раздельно через одну. Предварительно эти скважины отрабатывались на нефть до обводнения продукции на 50%. Как показала практика, это решение также себя не оправдало. В результате преждевременного перевода скважин при малой обводненности было потеряно много нефти между скважинами разрезающих рядов.

Промежуточные же пласты в рядах воду в большинстве скважин не принимают. Объемы закачки в основных пластах практически не регулируются.

Таким образом, опыт разработки многопластового объекта в ТТНК Арланского месторождения убедительно показывает низкую эффективность совместной разработки всех пластов этой толщи.

В связи с высокой вязкостью нефти при проектировании разработки на начальной стадии основным вопросом был вопрос о методе воздействия на продуктивные пласты, так как опыта заводнения при такой вязкости не было. Практика разработки показала, что принятое решение было обоснованным. Заводнение пластов оказалось высокоэффективным способом разработки и позволило достичь почти 45%-го извлечения нефти, тогда как на естественном режиме извлекалось бы вcero 18% запасов.

3.3 Проектирование методов повышения нефтеотдачи пластов

Этот эксперимент -- один из первых крупных проектов МУН на Арланском месторождении, проведению которого придавалось исключительно большое значение из-за его технологичности. При этом априорно ожидался высокий прирост нефтеотдачи. Перед экспериментом ставились следующие задачи:

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать