Разработка канала для комплексной скважинной аппаратуры
p align="left">Необходимо отметить, что большое сопротивление термисторов и их большой ТКС практически снимают проблему влияния сопротивлений подключающих датчик проводов. Если термистор имеет сопротивление 2 кОм, то изменение сопротивления проводов на 0,1 Ом приведет к погрешности по температуре порядка 0,002 ?С. В связи с этим нет необходимости использовать какие-либо сложные схемы подключения датчика (3х-4х-проводные).

Анализ структурной схемы показал, что для данной схемы целесообразно использовать микроконвертор, типа АDuC834 фирмы Analog Devices.

Микроконвертор ADuC834 является функционально законченным контроллером интеллектуального датчика, включающим в себя: два аппаратных модуля сигма-дельта АЦП высокого разрешения (24-разрядное и 16-разрядное), 8-разрядное микропроцессорное устройство управления и встроенную Flash-память программ и данных. Это малопотребляющее устройство принимает сигналы низкого уровня непосредственно с первичного преобразователя.

Кроме двух независимых модулей АЦП (основного и дополнительного) в составе устройства имеется датчик температуры и прецизионный программируемый усилитель, что позволяет выполнять прямые измерения малых уровней напряжения. АЦП с встроенным цифровым фильтром предназначены для измерения низкочастотных сигналов в широком динамическом диапазоне, таких, как сигналы с устройств взвешивания, тензометров или сигналы с температурных датчиков. Частота выдачи результатов измерений с выходов АЦП программируется.

Микроконвертор спроектирован для работы с внешним кварцевым резонатором на частоту 32 768 Гц, из которой встроенная система ФАПЧ вырабатывает внутреннюю рабочую частоту 12,58 МГц. Эта частота поступает на программируемый делитель, с выхода которого снимается рабочая тактовая частота вычислительного ядра микропроцессорного устройства. Такая схема организации тактирования позволяет ослабить вредное влияние паразитных высокочастотных токов, протекающих по общей шине и шине питания устройства, на точность аналого-цифровых преобразований. Процессорное ядро представляет собой микроконтроллер с системой команд, совместимой с набором инструкций семейства 8051. Машинный цикл ядра состоит из двенадцати циклов выбранной рабочей тактовой частоты. Микроконвертор имеет 8 кбайт Flash-памяти программ, 640 байт Flash-памяти данных и 256 байт оперативной памяти данных с произвольным доступом.

В состав ADuC834 включены также 12-разрядный ЦАП с выходом напряжения, два источника тока, монитор источника питания. Встроенная цифровая периферия микроконвертора включает в себя сторожевой таймер, счетчик временных интервалов (реального времени), три таймера-счетчика и модули последовательных портов UART и I2C/SPI.

Микроконвертор поддерживает режимы последовательной загрузки и отладки через UART, а также режим эмуляции через одну линию (единственный внешний контакт ЕА/). Устройство питается от однополярного источника с напряжением +3…+5 В. При напряжении источника +3 В потребляемая микроконвертором мощность составляет менее 10 мВт. Конструктивно ADuC834 выпускается в 52-контактном корпусе типоразмера MQFP [8]. Структурная схема микроконвертора приведена на рис. 2.3.

Структурная схема ADuC834

Рис. 2.3

Поскольку в состав микроконвертора уже входят Сигма-Дельта АЦП, источники тока, микропроцессор, таймер-счетчики, ОЗУ, память программ и интерфейс, то применение такого микроконвертора существенно упрощает структуру разрабатываемого канала. Эта упрощенная структура приведена на обобщенной схеме КСА (рис. 2.1). В нее входят следующие элементы: два первичных преобразователя, измерительный преобразователь емкости в период, микроконвертор, блок питания и магистрали.

3 Разработка принципиальной схемы

3.1 Вывод функции преобразования датчика влажности

В качестве первичного преобразователя для измерения влажности нефти используется цилиндрический датчик, состоящий из металлического корпуса, который служит наружным электродом, и коаксиального внутреннего цилиндрического электрода, покрытого слоем прочной и термостойкой пластмассы. Структура датчика схематически приведена на рис. 3.1.

Структура датчика влажности нефти

Рис. 3.1

Необходимо вывести функцию преобразования для данного датчика.

Емкость цилиндрического конденсатора определяется по следующей формуле:

(3.1)

где Ф/м - электрическая постоянная;

- относительная диэлектрическая проницаемость вещества, заполняющего межэлектродное пространство;

Н - высота электродов;

, - диаметры соответственно внутреннего и наружного электродов.

В данном случае имеется две емкости. В первой емкости межэлектродное пространство заполнено пластмассой. Значение ее находится по формуле:

(3.2)

где - относительная диэлектрическая проницаемость пластмассы;

Н=50 мм - высота электродов;

мм - диаметр внутреннего электрода без слоя пластмассы;

мм - диаметр внутреннего электрода со слоем пластмассы.

Емкость второго конденсатора определяется она по формуле:

(3.3)

где мм - диаметр наружного электрода;

- искомая диэлектрическая проницаемость ( для нефти, - воды, - воздуха).

В зависимости от содержания воды в нефти емкость будет изменяться.

Эти два конденсатора соединены последовательно, поэтому окончательное значение емкости определяется по формуле:

(3.4)

Определим значение емкости для чистой воды, чистой нефти и на воздухе.

При чистой нефти:

Ф;

Ф;

Ф.

При чистой воде:

Ф;

Ф;

Ф.

На воздухе:

Ф;

Ф;

Ф.

Таким образом, значение емкости изменяется от 2,6 до 65,5 пФ в зависимости от состава вещества, заполняющего межэлектродное пространство.

3.2 Разработка принципиальной схемы преобразователя емкости в период

Схема преобразователя емкости датчика в период повторения импульсов приведена на рис. 3.2. На рис. 3.3 представлены временные диаграммы, поясняющие работу схемы.

Схема преобразователя емкости датчика в период повторения импульсов

Рис. 3.2

Операционный усилитель с большим коэффициентом усиления выполняет функции схемы сравнения и находится в состоянии насыщения. Значение напряжения на выходе Uвых(t) по модулю равно значению напряжения насыщения Е и может изменять знак в зависимости от соотношения напряжений на входах усилителя. Напряжение U2(t) на неинвертирующем входе усилителя снимается с делителя, выполненного на резисторах R2, R3. Напряжение U1(t) на инвертирующем входе усилителя является выходным напряжением цепочки, образованной емкостью СХ и резистором R1. Напряжение U1(t) изменяется по экспоненте с постоянной времени , стремясь к значению напряжения насыщения Е.

Временные диаграммы

Рис. 3.3

В момент времени, когда U1(Т/2)=U2, схема сравнения переходит в противоположное состояние, т.е. напряжение Uвых меняет знак. Далее процесс циклически повторяется.

Выходное напряжение представляет собой периодическую последовательность двухполярных прямоугольных импульсов (типа «меандр»). Период повторения импульсов пропорционален емкости первичного преобразователя влажности.

Необходимо получить зависимость выходной величины (периода) от емкости датчика.

Значение напряжение U2(t) на неинвертирующем входе усилителя (рис. 3.3) равно:

(3.5)

где Е - напряжение насыщения;

к находится по формуле:

(3.6)

Напряжение U1(t) на инвертирующем входе усилителя изменяется по экспоненте:

(3.7)

где ф - постоянная времени, которая равна:

(3.8)

Найдем параметры а и b. С одной стороны, в моменты времени t, равные 0 и ?, напряжение U1(t) принимает следующие значения:

(3.9)

С другой стороны, как видно по временным диаграммам (рис. 3.3), в момент времени t=0 напряжение U1 =-kE, а в момент времени t=? - U1 =E. Подставив данные значения напряжения в выражения (3.9), получим систему уравнений:

(3.10)

Решив систему, получим:

Подставляем a и b в выражение (3.7):

(3.11)

Как видно из временных диаграмм (рис. 3.3), в момент времени t=T/2 напряжения U1 и U2 равны:

Прологарифмируем последнее выражение:

Постоянная времени ф, как отмечалось ранее, равна , поэтому:

(3.12)

Таким образом, получена зависимость выходной величины от емкости датчика.

Рассчитаем основные компоненты схемы.

Расчет схемы начинаем, исходя из условия: при частота fmin=5kГц. Отсюда можно вычислить период следования импульсов:

(3.13)

С другой стороны, период находится по формуле (3.12). Необходимо задаться коэффициентом k. Если k взять близким к нулю, то может возникнуть погрешность, связанная с дрейфом нуля. Если же, наоборот, близким к единице, то также возникнет погрешность из-за того, что напряжение U1(t) будет плавно стремится к значению Е, и не будет четкого перехода. Поэтому целесообразно принять коэффициент k, равным 0,5.

Теперь находим значение сопротивления R1 из выражения (3.12):

(3.14)

Коэффициент k находится по формуле (3.6), т.е

(3.15)

С другой стороны, сумму сопротивлений R3 и R2 можно найти следующим образом:

(3.16)

де Iд - ток, протекающий через делитель, образованный резисторами R3 и R2. Пусть Iд=10-4А, тогда:

(3.17)

Решая совместно выражения (3.15) и (3.17), получим Согласно ГОСТ 2825-67, выбираем резисторы

Для выбора резисторов необходимо вычислить мощность, рассеиваемую на них:

(3.18)

3.3 Разработка принципиальной схемы преобразователя сопротивления в напряжение

В качестве первичного преобразователя температуры используется термистор фирмы BetaTHERM (Ирландия) - 2К7МСD1. Данный термистор при температуре 25? С имеет сопротивление 2 кОм, а в диапазоне температур от 0 до 120? С его сопротивление меняется от 5,65 кОм до 114,6 Ом [6].

Как уже отмечалось ранее, в цифровых термоизмерительных приборах и системах целесообразно использовать Сигма-Дельта АЦП и ratio-метрическую схему подключения к нему термисторного датчика (рис. 3.4).

Ratio-метрическая схема включения термистора

Рис. 3.4

Последовательно с термистором включается один прецизионный резистор R0, с которого снимается опорное напряжение UREF для Сигма-Дельта АЦП, входящего в состав ADuC834. Этот резистор должен иметь малый ТКС, т.к. именно от него зависит дополнительная температурная погрешность канала термометрии. Так, например, при использовании прецизионных резисторов фирмы HOLSWORTHY с ТКС 1/?С дополнительная температурная погрешность для термисторного датчика при изменении температуры на 100 ?С составит (0,02...0,03) ?С. Сопротивление опорного резистора должно быть не меньше максимального сопротивления датчика во всем рабочем диапазоне температур. Поскольку максимальное сопротивление термистора составляет 5,65 кОм, то R0=6,19 кОм.

Цифровой код на выходе АЦП определяется по следующей формуле:

(3.19)

где n - разрядность АЦП;

- напряжение, снимаемое с термистора:

(3.20)

Опорное напряжение определяется по следующей формуле:

(3.21)

Поставляя (3.20) и (3.21) в выражение (3.19), получим:

(3.22)

Таким образом, цифровой код не зависит от значения тока или напряжения, а зависит лишь от сопротивления. Поскольку R0 - резистор прецизионный и почти не изменяет своего значения с изменением температуры, то получаем прямо пропорциональную зависимость кода от сопротивления.

Определим предельные значения кода. При минимальной температуре:

Код для Т=120? С:

3.4 Режим работы ADuC834

Режим работы всей схемы в основном определяется режимом работы микроконвертора, который устанавливается путем внесения определенных комбинаций в те или иные регистры специальных функций, т.е. программирования ADuC.

Чтобы определить работу схемы необходимо использовать следующие регистры:

1) ADCMODE (регистр режима АЦП) используется для управления режимами работы обоих каналов АЦП. Для того, чтобы разрешить работу основного АЦП, в ячейку ADCOEN необходимо записать 1. В биты с именами MD2, MD1 и MD0 записываются соответственно 0, 1, 1 для установления циклического преобразования. В этом режиме регистры данных АЦП постоянно модифицируются с частотой выбранного потока на выходе.

2) ADC0CON (регистр управления основным АЦП) используется для конфигурации основного АЦП по диапазону, выбору канала, разрешению внешнего ИОН и режиму униполярного или биполярного преобразования. В бит с именем XREF0 записывается 1 для того, чтобы разрешить использование основным АЦП внешнего ИОН через контакты REFIN(+) и REFIN(-) (для ratio-метрической схемы). CH1 и CH0 - биты выбора канала для основного АЦП. Записываем два 0 для выбора входов AIN1 (ножка 9) и AIN2 (ножка 10). Затем в бит с именем UNI0 записывается 1 для разрешения униполярного кодирования. Далее для выбора входного диапазона АЦП в биты RN2, RN1, RN0 записываются три единицы, что соответствует напряжению +2,56 В.

3) SF (регистр цифрового фильтра с «SINC»-характеристикой). Значение, записываемое в этот регистр, используется для установки коэффициента деления основной частоты при установке частоты обновления выходных данных модулей основного и дополнительного АЦП.

Частота потока выходных данных рассчитывается следующим образом:

(3.23)

где fADC - поток данных на выходе АЦП (частота модификации выхода);

fMOD =32768 Гц - опорная (тактовая) частота модулятора;

SF - десятичное значение содержимого регистра SF.

Примеры значений SF и соответствующих им частот (fADC) и времени (tADC ) преобразования АЦП показаны в табл. 3.1.

Таблица 3.1

Соответствие между значениями SF и частотами преобразования АЦП

SF

fADC, Гц

tADC , мс

13

103,3

9,52

69

19,79

50,34

255

5,35

186,77

На рис. 3.5 показана графическая зависимость ослабления помехи нормального вида для частоты входного сигнала 50 Гц от десятичного содержимого регистра SF. Пользуясь графиком, можно определить, что наименьшее влияние на точность измерений сетевых наводок с частотой 50 Гц будет обеспечиваться при десятичных значениях SF, равных 81 и 245.

Исходя из данных таблицы, выбираем значение цифрового фильтра SF, равным 81. Далее найдем частоту потока выходных данных и время преобразования АЦП:

(3.24)

(3.25)

Амплитудно-частотная характеристика фильтра при частоте F=50 Гц

Рис. 3.5

При осуществлении преобразований оба модуля АЦП для минимизации ошибок смещения, используют цикл стабилизирующего прерывания. Это означает, что время первого цикла преобразований для циклического режима работы АЦП увеличивается в два раза и составляет [8].

4) ICON (регистр управления источниками тока) используется для управления и конфигурации вариантов включения встроенных источников тока. Биты BO, ADC1IC и ADC0IC сбрасываются для выключения обоих источников тока контроля и токовой коррекции основного и дополнительного АЦП. В бит с именем I2PIN записывается 0 для подачи источника тока 2 (200 мкА) на внешний контакт 4 (Р1.3/AIN5/IEXC2). В I1PIN записывается 1 для подачи источника тока 1 на тот же контакт 4. I2EN и I1EN - биты разрешения источников тока 2 и 1 соответственно. В них записывается по единице. Таким образом, на контакт 4 подается ток 400 мкА.

4. Математические модели измерительных каналов

4.1 Математическая модель первичного преобразователя температуры

При использовании термисторов важным вопросом, от решения которого существенно зависит точность измерения температуры, является выбор математической модели термистора.

Наиболее простой из моделей, используемых для термисторов с отрицательным ТКС, является следующая:

(4.1)

где - сопротивление термистора при температуре Т;

Т - абсолютная температура;

А и В - постоянные коэффициенты [4].

Из формулы (4.1) может быть получена более удобная обратная математическая модель (Модель 1):

(4.2)

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать