Разработка методов и средств поверки и калибровки геодезических приборов для измерения превышений
p align="left">Рис. 4. Принципиальная схема стенда.

Как и в предыдущем методе, разработанный метод позволяет выявить длиннопериодические и остаточные погрешности измерения превышений, но не позволяет в полной мере оценить короткопериодические погрешности. Это связанно с ограниченностью задания минимального превышения ценой деления рейки. Но в методе предлагается задавать эталонные превышения интерферометром; это даст возможность выявление короткопериодической погрешности измерения превышения системы "нивелир - рейка".

Метод исследования системы "нивелир - рейка" с использованием концевых мер длины основан на сравнение эталонных превышений, задаваемых при помощи концевых мер длины (КМД), с измеренными превышениями нивелиром по рейке. Для изменения высоты точки в разработанном методе используются концевые меры длины II разряда, погрешность размера которых не превышает 0,4 мкм (при температуре 200С). Эталонные превышения задаются в диапазоне 0200мм с шагом от 0,2мм до 10мм, что позволяет выявить короткопериодические погрешности на отдельном участке рейки. Таким образом, существует возможность исследовать инструментальную погрешность системы "нивелир - рейка".

Для выполнения исследования нивелир устанавливается на жесткое основание, на выбранном расстоянии устанавливается горизонтальный столик с отшлифованной поверхностью. На столик поочередно устанавливаются и притираются КМД различной высоты, на меры ставится нивелирная рейка с накладным уровнем. При установке различных КМД и рейки снимается отсчет по нивелиру. Результатом калибровки являются графики погрешности измерения высоты КМД.

Предлагаемый метод является более функциональным, так как позволяет производить исследование на больших расстояниях между нивелиром и рейкой, а так же позволяет проводить испытания как в лабораторных, так и в полевых условиях.

Представленные во 2-ой главе разработки позволяют:

- исследовать короткопериодическую погрешность измерения вертикального угла геодезических приборов - теодолитов, тахеометров;

- исследовать инструментальную погрешность системы "нивелир - рейка" при помощи растрового измерительного преобразователя;

- исследовать инструментальную погрешность системы "нивелир - рейка" на компараторе;

- исследовать инструментальную погрешность системы "нивелир - рейка" с использованием концевых мер длины;

- провести калибровку координатных систем типа лазерный трекер.

Третья глава. В этой главе представлены разработанные стенды для поверки и калибровки, входящие в разработанную при участии автора поверочную установку УМК-М.

Стенд УМК-М для поверки и калибровки систем геодезических приборов для измерения вертикальных углов (Вертикальный стенд) - рис. 5.

Рис.5. Схема стенда для исследования тахеометров при измерении ВУ.

В точках К1,К3,К4,К5,К6, установлены коллиматоры (в качестве коллиматоров использованы зрительные трубы теодолитов типа Т2), а в точке Т - поверяемый теодолит. Взаимное расположение коллиматоров таково, что обеспечивает измерение вертикальных углов (ВУ) от 00до450 и от 00до - 450.

Для испытаний геодезических приборов необходимо знать эталонный угол. Для измерения эталонных углов были использованы высокоточные приборы: оптический теодолит Т1 и электронный тахеометр фирмы "Leica" TPS 1100 (m = 0,5”). Были произведены измерения всех вертикальных углов двенадцатью приемами. В результате измерений были получены средние квадратические погрешности (СКП) для средних значений ВУ из 12-ти приемов (см. табл. 1).

Таблица 1

Прибор

Теодолит Т1

Тахеометр TPS 1100

+40

+250

+450

-450

+40

+250

+450

-450

m

2,9”

2,6”

2,3”

3,8”

3,2”

2,6”

3,1”

2,6”

Как видно из табл. 1, СКП эталонных углов, измеренных двумя разными по точности приборами, одинаковые. Отсюда можно сделать вывод, что определяющим фактором в полученных результатах является фокусное расстояние коллиматоров (зрительные трубы Т2, f=300мм). Полученные СКП эталонных углов показали, что испытание на разработанном стенде можно проводить только тех геодезических приборов, точность которых сопоставима с полученной или ниже.

Стенд УМК-М для исследования короткопериодической погрешности систем геодезических приборов для измерения вертикальных углов - рис.6

представляет собой вертикально установленный на изолированном фундаменте швеллер 19, на котором расположена станина 18 с подвижной кареткой 15. На станине жестко закреплена оправа 6 растровой меры 5 (LID-300 (HEIDENHAIN)), длина меры 200 мм, дискретность отсчитывания 0,5 мкм. На каретке расположены считывающая головка 4 LID-300, нивелир Ni-007 (поз.2), блок разрезного четырех площадочного фотодиода 1. Отражатель исследуемого тахеометра (на рис. 6 не показан) - жестко закреплен на уровне разрезного фотодиода на корпусе Ni-007 с противоположной стороны.

Рис.6. Схема вертикального стенда для исследования тахеометров.

Сигналы с разрезного фотодиода через аналого-цифровые преобразователи (АЦП) и электронного счетчика 21 LID-300 выводятся на ЭВМ. Растровая мера служит в качестве эталонной при измерении перемещений подвижной каретки, нивелир Ni-007 и разрезной фотодиод служат датчиками опорного направления при исследовании оптических приборов и приборов с лазерными указателями. Исследуемый теодолит (тахеометр) устанавливается на поворотном прецизионном столе, расположенном на изолированном фундаменте, расстояние между прибором и стендом - 9,8м (см. рис.5). Результаты испытаний тахеометра представлены на графике (рис. 7).

Рис. 7. Погрешности измерения вертикального угла тахеометром Leica TPS1100 на отражатель.

Из графика видно, что точность измерения вертикального угла при наведении на уголковый отражатель составляет 8”. Отсюда можно сделать вывод, что использование уголкового отражателя не приемлемо. Для исследований следует использовать разрезной фотодиод и полупроводниковый лазер для фиксации референтных направлений. В полученных результатах наблюдается закономерность, она возникает из-за не вертикальности движения каретки с отражателем вдоль стеклянной растровой меры (систематическая погрешность).

Исследование систематической погрешности вертикального стенда УМК-М с помощью лазерного интерферометра. Для этих исследований использован лазерный интерферометр фирмы HewlettPackard HP5528A с погрешностью измерения расстояний 1мкм+1ppm.

По результатам многократных измерений построен график погрешности (рис.8). В данном эксперименте систематическая погрешность не превышают 50 мкм. Полученные значения являются калибровочными и их следует вводить как поправки при поверке и калибровке тахеометров (нивелиров) на вертикальном стенде.

Рис.8. Cистематическая погрешность работы стенда.

Стенд УМК-М для поверки и калибровки системы "нивелир - рейка" - рис. 3(а). В отличие от исследования ВУ, при исследовании нивелиров на подвижный столик устанавливается нивелир (1) (оптический, цифровой, лазерный). Нивелир устанавливался на горизонтальном столике вертикального стенда. Расстояние от прибора до рейки составляло порядка 3 метров. Винт микроподачи обеспечивает перемещение в вертикальном направлении подвижной части со столиком и нивелиром. Инварная метровая штрих-кодовая рейка (7) устанавливается неподвижно (для оптических нивелиров используется метровая инварная рейка с 5мм делениями). На подвижной каретке закреплена считывающая головка Lid-300 (HEIDENHAIN) (5), растровая мера длиной 200мм (6) установлена в корпусе, жестко связанном с неподвижным, вертикально расположенным на фундаменте, швеллером. Мера изготовлена из стекла, коэффициент линейного расширения которого составляет 10мкм/м градус. Погрешность отсчитывания составляет порядка 3мкм. Перемещение в вертикальном направлении отображается на цифровом блоке VRZ 735 (HEIDENHAIN) с дискретностью 0,5 мкм.

Рис. 9. Результаты исследования нивелира DiNi10 и 1м штрих-кодовой инварной рейки.

Рис. 10. Результаты исследования нивелира DiNi12 и 1м штрих-кодовой инварной рейки.

На графиках (рис. 9 и 10) показаны результаты исследования цифровых нивелиров DiNi10, DiNi12 и 1 метровой инварной штрих-кодовой рейки.

Из графиков видно, что погрешность определения превышения по инварной штрих-кодовой рейке цифровым нивелиром DiNi10 не превышает 0,05 мм, а DiNi12 - не превышает 0,015 мм. На графиках (рис. 9 и 10) показаны результаты исследования на одном из участков рейки, выбор именно этих участков обусловлен наибольшей величиной погрешности.

Горизонтальный стенд УМК-М для поверки и калибровки системы "нивелир - рейка". Основой разработанного стенда является оптико-механический компаратор МИИГАиК, существенно доработанный и усовершенствованный (см. рис.4).

Для совместного исследования нивелира и рейки применялась методика, разработанная в главе 2. Зная расстояние между микроскопами по инварному жезлу, мы имеем возможность переместить подвижную каретку на это расстояние. Вводим штрих рейки в бисектор микроскопа и снимаем отсчеты по нивелиру. Затем перемещаем каретку с рейкой так, чтобы тот же штрих рейки попал в бисектор другого микроскопа, и снимаем отсчеты по нивелиру. Разность двух соответствующих отсчетов даст нам перемещение. Также возможны исследования c использованием лазерного интерферометра.

В табл. 2 показаны результаты исследования цифрового нивелира DiNi12 и 3 метровой инварной штрих кодовой рейки.

Из результатов исследований следует, что инструментальная погрешность измерения метровых интервалов при помощи системы "цифровой нивелир DiNi12 - инварная 3-х метровая штрих-кодовая рейка" не превышает 0,06 мм.

Таблица 2

Метровые интервалы

Номинальная длина метровых интервалов рейки полученная на УМК-М

Длина метровых интервалов измеренных цифровым нивелиром DiNi12

Погрешности измерения метровых интервалов цифровым нивелиром DiNi12 с учетом поправок за компарирование рейки на УМК-М

ход прямо

ход обратно

среднее

 

мм

 

мм

 

мм

 

мм

мм

1

+0,009

+0,01

-0,01

+0,000

-0,009

2

+0,007

+0,01

+0,02

+0,015

+0,008

3

+0,003

+0,01

-0,01

+0,000

-0,003

4

-0,012

+0,02

+0,00

+0,010

+0,022

5

-0,005

-0,01

-0,02

-0,015

-0,010

6

-0,021

-0,01

+0,00

-0,005

+0,016

7

-0,008

+0,02

+0,02

+0,020

+0,028

8

-0,007

+0,01

-0,01

+0,000

+0,007

Погрешность метровых интервалов инварной 3-х метровой штрих-кодовой рейки не превышает 0,02 мм. Инструментальная погрешность самого цифрового нивелира DiNi12 при измерении метровых интервалов не превышает 0,04мм.

Исследование системы "нивелир - рейка" с использованием концевых мер длины. Для проведения эксперимента было выбрано три высокоточных нивелира: оптический Н-05 и два цифровых DiNi10 и Dini12, а также рейки: инварная для оптического нивелира, инварная и четыре деревянных рейки для цифровых нивелиров. Все три прибора были установлены на штативы на одинаковом расстоянии от нивелируемых точек и на приблизительно одной высоте. Три точки установки реек представляли собой неподвижные горизонтальные площадки (предметный столик). Расстояния от нивелиров до трех точек нивелирования составляли: 3,5 м; 13,7 м; 29,0 м соответственно. Для изменения высоты точки использовались концевые меры длины (КМД), погрешность размера которых не превышала 0,4 мкм (при температуре 200С). Размер КМД составлял от 0,5 мм до 200 мм.

На нивелируемую точку по очереди устанавливались рейки и снимались отсчеты. Затем на точку устанавливали концевую меру размера 0,5мм и снова поочередно ставили рейки и снимали отсчеты. Изменение высоты при помощи концевых мер проводилось от нуля (пустая площадка), до 200 мм. Шаг изменения высоты: от 0 до 10 мм составлял 0,5 мм; от 10 до 100 мм составлял 10мм; от 100 до 200 мм составлял 20мм; между мерой в 1 мм и 1,5 мм устанавливалась мера в 1,2 мм. Такая методика была использована на каждой из трех нивелируемых точек. Реализованная методика представляет собой нивелирование из середины.

В результате исследования получено, что отклонения в превышениях, определенных нивелиром Н-05 по инварной рейке с 5-ти миллиметровыми делениями, составили порядка 0,2мм. Отклонения в превышениях, определенных нивелиром DiNi 10 по инварной штрих-кодовой рейке, не превышают 0,1мм. Отклонения, определенные нивелиром DiNi 12 по инварной штрих-кодовой рейке, не превышают 0,05 мм. Можно сделать вывод, что нивелир DiNi 12 является более точным.

Методика проведения эксперимента в полевых условиях почти не отличается от методики в лаборатории. Разница лишь в том, что было добавлено расстояние 50м и подобрано максимальное расстояние 86,5м, на котором нивелиры DiNi 10 и DiNi 12 могли отсчитывать по рейке.

Из проведенных исследований вытекают следующие выводы. С ростом расстояния от нивелира до рейки растет и погрешность определения превышения. Максимальная погрешность измерения превышений нивелиром DiNi10 на 3,5м составила 0,2мм, на 13,5м - 0,2мм, на 29,0м - 0,5мм, на 50м - 0,6мм и на 86,5м погрешность достигла 1,2мм. Максимальная погрешность измерения превышений нивелиром DNi12 на 3,5м составила 0,15мм, на 13,5м - 0,25мм, на 29,0м - 0,35мм, на 50м - 0,55мм и на 86,5м погрешность достигла 1,2мм.

Проведенные исследования метода калибровки систем "нивелир - рейка" с помощью концевых мер длины продемонстрировали возможность выявления инструментальной погрешности. В результате исследований выявлены инструментальные погрешности, которые в дальнейшем могут быть учтены при разработке методик и инструкций по нивелированию различных классов.

Результаты поверки и калибровки системы лазерного трекера для измерения превышений. Лазерный трекер (рис.11) является высокоточным средством измерения и, в соответствии с законом о единстве измерений, требует проведения метрологической поверки или калибровки.

Исследование проводилось в соответствии с разработанной в главе 2 методикой. Для исследования был предоставлен лазерный трекер фирмы "FARO". Заявленная фирмой погрешность измерения вертикальной координаты "Z" или превышения составляет 18мкм + 3ppm .

Рис. 11. Лазерный трекер "FARO".

Рис. 12. График погрешностей измерения превышений лазерным трекером.

При такой заявленной погрешности в качестве эталонного средств был выбран растровый измерительный преобразователь с погрешностью 3мкм, а в качестве альтернативного - лазерный интерферометр с погрешностью 1мкм+1ppm. Для исследования погрешности измерения превышения в диапазоне от -450до+450 работа проводилась при двух установках лазерного трекера. Трекер был установлен на расстоянии 200мм от отражателя. Данные условия вызваны тем, что длина растровой меры измерительного преобразователя составляла 200мм.

По результатам исследований был построен калибровочный график (рис. 12) погрешностей измерения превышений лазерным трекером. В результаты поверки были внесены поправки за систе-матическую погрешность хода подвижной каретки. Эти исследования показали, что инструментальная погрешность измерения превышения лазерным трекером не превышает 30 мкм, однако при изменении горизонта инструмента происходит "скачок", это может свидетельствовать о наличие неучтенной погрешности.

ВЫВОДЫ

1. Разработаны методы поверки и калибровки геодезических приборов для измерения вертикальных углов и превышений, позволяющие повысить точность измерений. И использование прецизионных линейных преобразователей и лазерных интерферометров позволяет экспериментально исследовать наличие короткопериодической погрешности поверяемого средства измерения.

2. Разработанные методы и средства поверки и калибровки геодезических приборов позволяют:

- исследовать короткопериодическую погрешность измерения вертикального угла геодезических приборов - теодолитов, тахеометров;

- исследовать инструментальную погрешность системы "нивелир - рейка" при помощи растрового измерительного преобразователя;

- исследовать инструментальную погрешность системы "нивелир - рейка" на компараторе;

- исследовать инструментальную погрешность системы "нивелир - рейка" с использованием концевых мер длины;

- провести калибровку координатных систем типа лазерный трекер.

3. На основе разработанных методов и средств поверки и калибровки геодезических приборов для измерения превышений или вертикальных углов разработаны специальные стенды, входящие в состав "Универсального метрологического комплекса МИИГАиК" (УМК-М).

4. На разработанных стендах проведены соответствующие исследования геодезических приборов, которые показали работоспособность, надежность и достаточную точность "Универсального метрологического комплекса МИИГАиК" (УМК-М).

5. По результатам исследований на методику измерений университетом подана заявка на изобретение и получено положительное решение. Получен официальный документ - "Сертификат эталонного средства измерения", что позволит проводить поверки и калибровку геодезических приборов - нивелиров, теодолитов, тахеометров, а также средств измерений в машиностроении, находящихся в эксплуатации в государственных и коммерческих предприятиях, организациях и фирмах.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Голыгин Н.Х. Степочкин А.А. Травкин С.В. Бахарев Е.С.Исследование оптико-электронных геодезических приборов и устройств для аттестации //Изв. вузов. Геодезия и аэрофотосъемка. - 2005. - №5. - С. 123 - 135.

2. Голыгин Н.Х., Травкин С. В., Стенд для аттестации вертикальных угловых измерительных систем геодезических приборов. // Изв. вузов. Геодезия и аэрофотосъемка. - 2006. - №2. - с. 128 - 131.

3. Травкин С. В. Метод определения погрешности измерения превышения высокоточными нивелирами с использованием концевых мер длины //Изв. вузов. Геодезия и аэрофотосъемка.-2006-№3-С.97-100.

4. Бахарев Е.С., Голыгин Н.Х., Травкин С.В., Хиноева О.Б., Ямбаев Х.К. Измерительный комплекс для аттестации угловых и линейных измерительных систем УМК-М//Приборы, 2006,-№5(71). -С. 50-54.

5. Хиноева О.Б., Жданова Е.С., Целикова А.А., Травкин С.В., Исследование угловых измерительных систем геодезических приборов - Сб. научных докладов научно-практической конференции "Научно-техническое творчество молодежи - путь к обществу, основанному на знаниях". Москва, 2006, - С. 246-248.

6. Клименок И.В., Быков К.И., Ласунова Е.А., Травкин С.В., Исследование цифровых нивелиров на компараторе УМК-М - Сб. научных докладов научно- практической конференции "Научно-техническое творчество молодежи - путь к обществу, основанному на знаниях". Москва, 2006, - С. 242-244.

7. Травкин С.В., Ямбаев Х.К., Голыгин Н.Х., Степочкин А.А., Стенд для поверки и калибровки нивелиров и реек, заявка о выдаче патента Российской Федерации на изобретение М кл. G01 с 7/00, № 031539, 10.08.2006.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать