Гигантская рябь течения
p align="left">Таблица 1. Морфометрия русловой ряби течения и гидравлические характеристики потоков в 4-х пунктах исследований К алтайскому разделу этой таблицы необходим комментарий. Над полем гигантской ряби течения, параметры которой указаны в таблице, в круговоротной зоне в Курайской впадине П.Э. Карлингом получены расходы потока в 750 000 м3/с. В таблице показаны гидравличесткие характеристики потока на стрежне. Цифры П.Э. Карлинга и наши получены разными методами и не противоречат друг другу, так как, в круговоротной зоне на спаде потопа все гидравлические параметры и должны быть меньше. Но и расчеты П.Э. Карлинга показывают, что правило М.С. Ялина для гигантской ряби не корректно, и Р.Б. Дайнхарт совершенно прав.

Район

р. Сев. Татл, Вашингтон

р. Медина, Техас

Колумбийское плато

Алтай

Источник

Dinehart, 1992

Baker and Kochel, 1988

Baker, 1973; Baker&, Nummedal, 1978

Baker, Benito Rudoy, 1993; Rudoy, Baker, 1993

Дата

Декабрь, 1989

Август, 1978

Плейстоцен

Плейстоцен

Длина волны, м

6-15

80

120

200

Высота волны, м

0.2

3

6

20

Глубина

потока, м

1,4

10

100

400-500

Средняя скорость течения, м/с

2.5

3.5

18

32.5

Напряжение сдвига ложа, н/м2

100

300

1800

до 20000

Мощность, вт/м2

250

1000

32000

до 1000000

Расход, м3

175

7000

10000000

свыше 18000000

Чередование гранулометрически разнородных слоев и горизонтов в строении паводковых дюн можно объяснить комбинацией механизмов периодического оползания крупнообломочного материала, накапливающегося в пригребневой части дистального слоя, флуктуацией потока и короткопериодическими изменениями гранулометрии влекомых наносов. П.Э. Карлинг полагает, что поскольку падение слоистости в паводковых дюнах близко к состоянию покоя, то гряды в русле перемещались в основном не обваливанием и оползанием, а перекатыванием подвижных слоев через изгиб в вершине гребней и отложением их на дистальном склоне.

Для роста ряби в условиях соответствующего потока требуется очень небольшие интервалы времени. Р.Б. Дайнхарт на примере рек северо-запада США установил, что при высоте гребней речных дюн в пределах 0,2 - 0, 4 м их длина увеличивается до 30 м за 1 - 2 суток. Т.К. Густавсон, все же можно предположить, что и формирование рельефа гигантской ряби течения в дилювиальных потоках происходило очень быстро.

Сейчас же пока можно сделать предварительный вывод о том, что гигантские знаки ряби течения являются русловыми формами, которые не могут быть сопоставлены непосредственно из наблюдений ни в современных ущельях и небольших разветвленных реках, ни в больших зрелых речных долинах.

Завершая этот раздел, отмечу, что в настоящее время ни в одной стране не разработана классификация гигантских знаков ряби течения подобная тем, которые имеются для мелкой речной ряби. Эта работа по генетическому разделению дилювиальных фаций еще впереди и, по-видимому, лежит в русле «потопной седиментологии» Пола Карлинга.

Определения

Гигантская рябь течения - это активные русловые формы рельефа высотой до 20 м, образованные в околотальвеговых участках пристрежневых частей магистральных долин дилювиального стока. В плане образуют серповидные или извилистые гряды длиной от первых метров до километров, разделенные мульдообразными понижениями с частыми перемычками. Гигантские знаки ряби течения состоят из косослоистых промытых гравийно-галечниковых отложений с участием окатанных валунов и глыб. Гигантские знаки ряби являются морфологическим и генетическим макроаналогом мелкой песчаной ряби течения. Гигантские знаки ряби течения имеют асимметричную в поперечном профиле форму «китовой спины», где более пологий слабовыпуклый к гребню склон обращен навстречу течению палеопотока, а более крутой, слабовогнутый в пригребневой части, склон, находится в зоне относительной русловой тени.

Гигантская рябь течения является важнейшим звеном группы аккумулятивных форм парагенетической ассоциации дилювиального морфолитокомплекса горных и равнинных скэблендов.

Скэбленд - это территории ледниковой и приледниковой зон, подвергающиеся или подвергавшиеся ранее многократному воздействию катастрофических паводков из ледниково-подпрудных озер, оставивших оригинальные эрозионные, эворзионные и аккумулятивные природные образования, по которым возможно определить гидравлические параметры водных потоков, реконструировать историю скэбленда и дать прогноз. Скэбленд - это площадь, рассеченная параллельными ложбинами, изобилующая каплевидными в плане холмами, водобойными котлами и следами кавитации; геоморфологический ландшафт, созданный гидросферной катастрофой.

Определения «скэбленда» возможно расширить в связи с марсианскими открытиями и в связи с разработкой геофизического эффекта подледных извержений вулканов. В этом аспекте происхождение скэблендов целесообразно связывать также и с внезапным таянием криосферы и катастрофическими прорывами вод под мерзлотой и между ее слоями как на Земле, так, в частности, и на планете Марс.

Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков

Палеогидрология

Только на территории Горного Алтая общая площадь ледниково-подпрудных озер, подсчитанная по высотному положению сохранившихся береговых линий, спиллвеев и кровле озерных отложений, составляла в позднем плейстоцене не менее 27 тыс. км2, а суммарный объем достигал 7, 3 тыс. км3. В целом же в горах Южной Сибири по предварительным оценкам эти параметры составляли, соответственно, 100 тыс. км2 и 60 тыс. км3.

Самыми крупными ледниково-подпрудными озерами из изученных были Чуйское и Курайское, которые на определенном этапе их эволюции, на стадиях деградации последнего оледенения, представляли собой единый Чуйско-Курайский ледниково-подпрудный водоем. Обнаруженные во время полевых работ 1984 г. на абсолютных отметках свыше 2400 м новые перевалы-спиллвеи из Курайской котловины в бассейн р. Чаган-Узуна и из Чуйской - в бассейн р. Башкауса, а также комплекс дилювиальных валов на перевале Кызыл-Джалык - Кызыл-Чин и Кызкынор, показали, что рекордные объемы Чуйско-Курайской системы ледниково-подпрудных озер могли достигать 3500 км3, т.е. были гораздо больше максимальных объемов оз. Миссула.

Характерные для горных систем Центральной Азии большие межгорные котловины, окруженные высокими хребтами, несущими мощное оледенение, в ледниковое время представляли собой систему сообщающихся водоприемников, сток из которых осуществлялся по крупнейшим дренажным системам, на Алтае - по долинам Чуи, Чулышмана, Башкауса, Катуни, Бии, и, вероятно, Джасатера-Аргута. Это установлено по комплексу дилювиальных образований в этих долинах, но главным образом - по местонахождениям рельефа гигантских знаков ряби течения.

В случае повышенной мощности ледниковых плотин в каналах стока регулирование запасов воды в водоприемниках происходило путем частичной водоотдачи через дренажные каналы низших порядков - перевальные седловины в соседние бассейны. Сброс части вод через спиллвеи Тобожок-Башкаус должен был вызывать катастрофическое опорожнение ледниково-подпрудных озер в долинах рр. Башкауса, Улаганов и Кубадру. Прорывы Чуйского, Курайского или Уймонских озер провоцировали сбросы воды из Яломанской впадины. Эта озерно-дренажная сеть была чрезвычайно динамичной. Каждый очередной сброс или всех озерных вод, или их излишков немедленно компенсировался интенсивным талым стоком с ледников горного обрамления.

Короткопериодические опорожнения и заполнения котловин накладывались на озерно-ледниковые макроритмы длительностью в десятки тысяч лет, на всех этапах эволюции озер за исключением тех промежутков времени, когда поверхность озер вовлекалась в область питания ледников и возникали наледные ледоемы и «пойманные озера». На начальных и конечных стадиях оледенений, когда ледниковые плотины были маломощными и неустойчивыми, опорожнения происходили за счет прорывов или всплывания плотин. В остальных случаях излишки воды сбрасывались через спиллвеи, а также поверх плотин, которые в итоге опять-таки прорывались.

В магистральных долинах стока из некоторых котловин имеются фрагменты отложений подпруживавших озера ледников. Эти морены приурочены к створам участков прорыва на разных гипсометрических уровнях каналов при выходе из котловин. Фрагменты морен встречаются и на бортах каналов стока ниже участков прорыва. Такие образования специально изучались автором в долине Чуи между Чуйской и Курайской впадинами, ниже Курайской впадины, на склонах в урочище Баротал, в долине р. Катуни ниже урочища Сок-Ярык, в долине р. Чулышмана, в долине р. Ванча в Горном Бадахшане и в других местах. В.В. Бутвиловский и Г.Г. Русанов изучали эти образования в бассейне р. Башкауса, а М.Г. Гросвальд - в большинстве ледниковых районов мира.

Противники теории дилювиального морфолитогенеза утверждают, что если бы ледниково-подпрудные озера сбрасывались катастрофически, то дилювиальные потоки эродировали бы весь рыхлый материал в нижележащих долинах.

Во-первых, иной, не катастрофический, сценарий разгрузки ледниково-подпрудных озер в настоящее время неизвестен. Во-вторых, многочисленные современные примеры в самых разных районах планеты показывают, что ледниково-подпрудные озера способны продуцировать катастрофические паводки и без полного уничтожения подпруживающих ледников и их фронтальных морен.

Очевидно, что и сбросы Чуйского, Курайского, Уймонского и других озер в направлении магистральных долин на стадиях последней дегляциации, когда озера уже не достигали максимальных объемов в связи с уменьшением талого стока и маломощностью плотин, происходили главным образом по внутри- и окололедниковым каналам и полостям, а также - по подледниковым спиллвеям. Полного уничтожения плотин на этих этапах не происходило.

Таким образом, например, было спущено в сентябре 1982 г. оз. Стрэндлайн на Аляске. Это озеро имело объем 7 108 м3. Скорости дилювиального потока были оценены авторами статьи в 14 м/с. После катастрофического сброса озера, которых длился 5 часов, внутриледниковые каналы стока оставались открытыми еще около года, после чего закрылись.

У. Мэтьюз сообщает о механизме катастрофического прорыва ледниково-подпрудного оз. Саммит в декабре 1965 г.. Это озеро было спущено по внутриледниковому туннелю правильно формы с максимальным диаметром 13,1 м и длиной почти 13 км. Максимальный расход воды составлял 3200 м3/с.

Ярким примером обсуждаемого механизма катастрофических сбросов ледниково-подпрудных озер является долина р. Ванч на Памире. Верховья этой долины буквально завалены протаивающим моренным материалом - реликтом многочисленных подвижек ледника Медвежий. В 3 - 4 км от устья р. Дустироз вниз по р. Ванч долину почти перегораживает хорошо сохранившийся конечно-моренный комплекс ледника Русского географического общества. Этот комплекс представляет собой, по существу, активный каменный глетчер, под моренным чехлом которого залегает интенсивно убывающий ледниковый лед. А ведь только в течение 20-го столетия Абдукагорское озеро прорывало ледниковую плотину не менее шести раз: в 1910, 1937, 1951, 1963, 1973 и в 1985 годах. Зато еще ниже ледника РГО по течению Ванча долина в прирусловой части оказалась практически полностью вычищена гляциальными прорывными паводками, которые генерировало Абдукагорское ледниково-подпрудное озеро. Здесь можно встретить почти весь известный геоморфологический набор следов дилювиальных потоков: подрезанные конусы выноса, выположенное днище самой долины, покрытое огромными, в несколько метров в диаметре, глыбами, маргинальные каналы дилювиальных стоков по коренным бортам долины, эворзионные впадины «сухих водопадов» и т.п.

При кульминации оледенений механизм подледниковых катастрофических сбросов озер становился, по-видимому, превалирующим, хотя сами сбросы происходили реже. В частности дилювиальные каналы сбросов и геоморфологические следы работы напорных подледниковых вод под позднеплейстоценовой ледниковой лопастью описываются для Южного Онтарио, провинций Альберта, Квебек и северо-западных территорий современной Канады. Формирование отдельных форм рельефа, происхождение которых связывалось ранее с приледниковым морфогенезом, Т. Бреннард и Дж. Шоу объясняют напряженными водно-эрозионными динамическими обстановками под ледниковыми щитами.

Сейчас разработаны математические модели нескольких механизмов истечения воды из ледниково-подпрудных озер и внутриледниковых полостей, рассматривающий широкий их спектр от медленного просачивания воды через трещины во льду и термоэрозии с дальнейшим прорывом до катастрофических взламываний, прорывов льда. С палеогляциологических позиций важно то, что приледниковые и внутриледниковые озера способны продуцировать катастрофические паводки без полного уничтожения подпруживающего ледника. С геоморфологических позиций важно то, что наличие моренного материала в каналах стока не опровергает вероятность катастрофических опорожнений озер.

Несколько лет назад, когда рельеф гигантской ряби течения в горах Южной Сибири уже многие исследователи перестали, наконец, именовать мореной и т.п., то есть когда гигантская рябь течения получила свое верное, дилювиальное, объяснение, некоторое недоумение естествоиспытателей вызывала необычная ориентировка гигантских дилювиальных гряд в Курайской межгорной впадине. Согласно этой ориентировке, направление четвертичных дилювиальных потоков из котловины было обратным современному направлению р. Чуи. Другими словами, огромные массы воды, как и писали об этом Г.Ф. Лунгерсгаузен и О.А. Раковец, изливались в сторону Монголии.

Палеогляциологические реконструкции П.А. Окишева, основанные на том, что последнее оледенение в горах Алтая возникло и существовало вследствие понижения среднелетних температур воздуха относительно современных примерно на 5 без увеличения относительно современного среднегодового количества осадков, показали, что талый сток с ледников Алтая был в 10 раз меньше современного, т.е. был настолько ничтожен, что поглощался «каналами и трещинами ледника, занимавшего долину Чуи» в максимум оледенения и не «обеспечивал» образования озера в Курайской, в частности, котловине. Другими словами, ледники как губка впитывали ту малую воду, которая была, и котловины с подпруженным ледниками же стоком оставались сухими.

Для оценки талого стока в максимум и постмаксимум последнего оледенения в бассейне крупнейшей на Алтае Чуйской котловины мы использовали данные самого П.А. Окишева о градиенте температур в эти периоды и предлагаемые им же величины депрессии снеговой линии. В разработке модели учитывались рекомендации М.Б. Дюргерова, В.Г. Ходакова и А.Н. Кренке. Погрешность полученных результатов, по-видимому, не превысила ошибки определения границ четвертичных ледников.

Наши расчеты показали, что объем современного ледникового стока в бассейне верхней Чуи составляет около 0,3 км3/год. В первую фазу позднечетвертичного оледенения он составлял в среднем около 8,5 км3/год. Это означает, что в ледниковый максимум вюрма, если принимать исходные данные П.А. Окишева, объем талого стока с ледников Алтая мог быть почти в 30 раз больше современного.

Отмечу при этом, что, во-первых, для расчетов принималась величина депрессии границы питания как минимум на 400 м меньшая, чем действительная для указанных хронологических срезов; во-вторых, отклонения среднелетних температур воздуха на эти временные интервалы по некоторым данным были гораздо больше. Наконец, в-третьих, утверждение П.А. Окишева о неизменности, или даже - аридности, климата в ледниковые эпохи на территории гор Центральной Азии представляется совсем не бесспорным.

Работы Е.В. Девяткина, В.Э. Мурзаевой, А.А. Свиточа, Е.М. Малаевой и многих других геологов содержат очень серьезные доказательства синхронности плювиальных обстановок с похолоданиями с одной стороны, и глубокой аридизацией климата Центральной Азии в межледниковья с другой.

«Именно после оледенения до крайности усилился аридный режим Центральной Азии…», писал еще в 1949 г. Э.М. Мурзаев. На основании геоморфологических данных этот великий знаток Азии отмечал «несомненно более влажный, нежели современный, климат ледникового времени. Наши материалы по «сухим долинам» северо-восточного склона хр. Сайлюгем подтверждают выводы перечисленных исследователей о гораздо большей увлажненности климата в эпоху по крайней мере последнего оледенения и о постледниковой, резко проявившейся в раннем голоцене, аридизации.

Поэтому можно полагать, что объем талого стока в бассейне верхней Чуи был еще больше, чем полученный по нашим расчетам из данных П.А. Окишева. Так или иначе, даже опираясь на приведенные, явно заниженные, оценки объема ледникового стока, легко подсчитать, что для заполнения Чуйской котловины до горизонтали 2200 м потребовалось бы, исходя из объема котловины, порядка всего ста лет. Курайская котловина должна была заполняться до этих отметок как минимум втрое быстрее. Поэтому до выравнивания уровней Курайского и Чуйского ледниково-подпрудных озер сток воды должен был быть направлен на восток, в бассейн заполнявшегося Чуйского озера.

Возможен еще один сценарий палеогидрологических событий, способный удовлетворительно объяснить «странную» ориентировку гигантской ряби в Курайской впадине. При изменении плановой конфигурации речного русла гидродинамический режим меняется, меняется и характер донной и боковой эрозии и прибрежной и иной аккумуляции наносов. Это контролируется дифференциацией скоростей течения на разных участках русла и изменением характера продольной и поперечной циркуляции воды в нем. В некоторых местах возникают зоны энергичных локальных водоворотов, а также более обширные пространства с обратными течениями. Именно на таких участках обратных течений, как показывают экспериментальные и натурные материалы, возникают грядовые русловые формы, не фиксирующие, кстати, - и это очень важно, участки максимальных скоростей и глубин основного потока.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать