Геология с основами морфологии

Геология с основами морфологии

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

ЖИТОМИРСЬКИЙ ДЕРЖАВНИЙ ТЕХНОЛОГІЧНИЙ УНІВЕРСИТЕТ

Кафедра геотехнологій ім.. проф..М.Т. Бакка

Контрольна робота

з предмету: "Геологія з основами геоморфології"

Житомир 2010

1. Характеристика минералов класса сульфидов

Минералами называются природные химические соединения или отдельные химические элементы, возникшие в результате физико-химических процессов, происходящих в Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, и лишь незначительная часть - в аморфном. Свойства кристаллических веществ обусловливаются как их составом, так и внутренним строением, т.е. кристаллической структурой. В кристаллических решетках расстояния между элементарными частицами и характер связей между ними в разных направлениях неодинаковы (рис. 2.1), что обусловливает и различие свойств. Такое явление называется анизотропией или неравносвойственностью кристаллического вещества. Анизотропия кристаллических веществ проявляется во многих их особенностях. Например, в способности кристаллического вещества самоограняться, т.е. образовывать многогранники - кристаллы, форма кристаллов разнообразна и зависит, прежде всего, от внутреннего строения данного соединения.

Рис. 1. Кристаллические решетки:

а - алмаза (С), б - графита (С)

Проявление анизотропии можно рассмотреть на примере минерала графита, внутренняя структура которого приведена на рис.1,б. Расстояние между атомами углерода в пределах плоских слоев решетки составляет 0,14 нм (1,42 А), между слоями оно больше-0,33 нм (3,39 А). Это объясняет способность графита легко расщепляться (весьма совершенная спайность - см. ниже) на тонкие листочки, параллельные слоям решетки, и с трудом ломаться по неровным поверхностям в других направлениях, где расстояния между частицами и силы сцепления между ними больше.

В аморфных веществах закономерность в расположении частиц отсутствует. Свойства их зависят только от состава и во всех направлениях статистически одинаковы, т.е. аморфные вещества изотропны или равносвойственны. Прежде всего, это выражается в том, что аморфные вещества не образуют кристаллов и не обладают спайностью.

В различных физико-химических условиях вещества одинакового химического состава могут приобретать разное внутреннее строение, а следовательно, и разные физические свойства и создавать таким образом разные минералы. Это явление называется полиморфизмом (греч. "поли" - много). В качестве яркого примера полиморфизма можно назвать две модификации углерода (С): упомянутый минерал графит и минерал алмаз. Внутренняя структура алмаза резко отличается от строения графита (рис. 1,а). В структуре алмаза сцепления между атомами углерода однотипны и прочны. Отсюда вытекают и свойства алмаза (С), резко отличные от свойств графита (С): низкие твердость-1 и плотность-2,1-2,3 графита и высокие-алмаза, соответственно 10 и 3,5 и др.

Важным свойством кристаллических веществ, обусловленным внутренним строением, является также его однородность, выражающаяся в том, что любые части кристаллического вещества в одинаковых направлениях обладают одинаковыми свойствами, т.е. если кристалл графита в одном направлении имеет весьма совершенную спайность, то и любой его обломок в том же направлении обладает этим свойством.

Формы нахождения минералов в природе разнообразны и зависят главным образом от условий образования. Это либо отдельные кристаллы или их закономерные сростки (двойники), либо четко обособленные минеральные скопления, либо, чаще, скопления минеральных зерен - минеральные агрегаты.

Отдельные изолированные кристаллы и кристаллические двойники, т.е. закономерные сростки кристаллов, возникают в благоприятных для роста условиях. Форма кристаллов разнообразна и отражает как состав и внутреннюю структуру минерала, так и условия образования. Двойниками называются закономерные сростки кристаллов. Законы двойникования разнообразны, что приводит к формированию морфологически различных двойников.

Среди обособленных минеральных скоплений наиболее часто встречают друзы, представляющие скопления кристаллов, приросших к стенкам пещер или трещин. Секреции - результат постепенного заполнения ограниченных пустот минеральным веществом, отлагающимся на их стенках. Они имеют обычно концентрическое строение, отражающее стадийность формирования. Мелкие секреции называются миндалинами, крупные - жеодами. Конкреции - более или менее округлые образования, возникшие путем осаждения минерального вещества вокруг какого-либо центра кристаллизации. С этим часто связано концентрическое или радиально-лучистое строение конкреций. Мелкие округлые образования обычно концентрического строения называются оолитами. Их возникновение связано с выпадением минерального вещества в подвижной водной среде. Натечные образования, осложняющие поверхности пустот, возникают при кристаллизации минерального вещества из просачивающихся подземных вод. Натеки, свисающие со сводов пустот, называются сталактитами, растущие вверх со дна пещер - сталагмитами. На поверхности трещин могут развиваться плоские минеральные пленки, имеющие разное строение.

Наиболее широко развиты минеральные агрегаты кристаллического, аморфного или скрытокристаллического строения, слагающие толщи пород. Они образуются при более или менее одновременном выпадении из растворов или расплавов множества минеральных частиц. В кристаллических агрегатах минералы находятся в кристаллическом состоянии, но зерна их имеют неправильную форму. Величина зерен зависит от условий кристаллизации и изменяется от крупных до землистых. В жилах кристаллические агрегаты часто имеют массивное (сливное) строение, при котором отдельные зерна на глаз не различимы. Аморфные агрегаты представляют собой однородные плотные или землистые массы, обладающие матовым, восковым или слабожирным блеском. Скрытокристаллические агрегаты внешне напоминают аморфные и отличаются от них только микроскопически.

Они представляют собой коллоидные системы, состоящие из тонкодисперсных кристаллических частиц и заключающей их среды.

Встречаются минеральные образования, состав которых не соответствует форме, которую они слагают,- это так называемые псевдоморфозы (греч. "псевдо" - ложный). Они возникают при химических изменениях ранее существующих минералов или заполнении пустот, образовавшихся при выщелачивании каких-либо минеральных или органических включений. К первым относятся, например, часто встречающиеся псевдоморфозы лимонита по пириту, когда кубические кристаллы пирита (FeS2) превращаются в скрытокристаллический лимонит, ко вторым - псевдоморфозы опала по древесине и др.

Классификация минералов и их описание

Количество известных в настоящее время минералов превышает 2000. Их можно группировать по разным признакам. В основе принятой в настоящее время классификации минералов лежат химический состав и структура. Большое внимание уделяется также генезису (греч. "генезис" - происхождение), что позволяет познавать закономерности распространения минералов в земной коре. Роль различных минералов в строении последней неодинакова: одни встречаются редко и представляют собой лишь незначительные и необязательные включения в горные породы; другие слагают основную массу пород, определяя их свойства; третьи, образующие локальные скопления или рассеянные в породах, представляют интерес как полезные ископаемые. Ниже рассматриваются лишь наиболее широко распространенные минералы, принадлежащие к классам самородных элементов, сульфидов, галоидных соединений, оксидов и гидроксидов, карбонатов, сульфатов, фосфатов и силикатов.

Классы самородных элементов и сульфидов. Минералы этих классов не относятся к породообразующим, но многие из них являются ценными полезными ископаемыми.

Из наиболее распространенных минералов первого класса можно назвать серу S, возникающую в процессе возгонки паров при вулканических извержениях, а также в поверхностных условиях при химических изменениях минералов классов сульфидов и сульфатов и биогенным путем. Используется в химической промышленности для получения серной кислоты, в сельском хозяйстве и в ряде других отраслей.

Графит С связан преимущественно с процессами метаморфизма. Широко применяется в металлургии, для производства электродов и др. К этому же классу относятся такие ценные минералы, как алмаз, золото, платина и др.

К классу сульфидов принадлежат многочисленные минералы - руды металлов.

Галенит, или свинцовый блеск PbS,- встречается в виде кристаллических агрегатов, реже - отдельных кристаллов и их сростков. Сингония кубическая. Цвет свинцово-серый; черта серовато-черная, блестящая; блеск металлический; непрозрачный; спайность совершенная в трех взаимно перпендикулярных направлениях, т.е. параллельно граням куба; твердость 2,5; плотность 7,5.

Сфалерит, или цинковая обманка ZnS, - встречается в виде кристаллических агрегатов, реже сростков кристаллов кубической сингонии. Цвет бурый, редко бесцветный, примесями железа бывает окрашен в черный; черта желтая, бурая; блеск алмазный, металловидный; просвечивает; спайность совершенная в шести направлениях параллельно граням ромбического додекаэдра; твердость 3,5-4; плотность около 4.

Месторождения галенита и сфалерита, руд свинца и цинка в СССР многочисленны, например, на Северном Кавказе, в Средней Азии, Забайкалье.

Одним из наиболее распространенных минералов класса сульфидов является пирит FeS2. Образует агрегаты разной зернистости, часто встречаются вкрапленные в породы кубические кристаллы, несущие на гранях штриховку. Цвет золотисто-желтый; черта черная, зеленовато-черная; блеск металлический; излом неровный; спайность весьма несовершенная; твердость 6-6,5; плотность около 5. Используется для изготовления серной кислоты.

Происхождение минералов класса сульфидов связано главным образом с горячеводными растворами (гидротермальными). Они часто встречаются в кварцевых жилах вместе со многими минералами класса самородных элементов.

Этот класс объединяет минералы, представляющие соединения металлов с S - собственно сульфиды, Se - селениды, Те - теллуриды, As - арсениды, Sb - антимониды, Вi - висмутиды, которые выступают в роли анионов. Сюда же относят минералы, в анионной части которых одновременно находятся элементы пятой и шестой групп периодической системы Д.И.Менделеева. Это сульфоарсениды (кобальтин СоAsS, арсенопирит FеAsS) и сульфосоли.

В простейшем случае анионы этого класса соединений - одиночные анионы S2-, As3- , образующие моносульфиды. В более сложных - комплексные анионные группировки типа [S2]2- - "гантель"; [AsS]3-, образующие дисульфиды, а также анионные радикалы типа [AsS3]3-, образующие сульфосоли.

В качестве катионов в сульфидах наиболее обычны элементы Fе, Со, Ni, Cu, Zn, Pb, Ag, Hg, Mo, As, Sb, причем главенствующее значение имеет железо. Ряд элементов: Cd, In ,Ga, Tl встречаются преимущественно в рассеянном состоянии в виде изоморфных примесей или крайне редко образуют самостоятельные минеральные виды. Для большинства сульфидов характерно широкое развитие изо- и гетеровалентного изоморфизма. Изоморфные замещения характерны как для катионов, так и для анионов. Например, в сфалерите ZnS наблюдается изовалентный изоморфизм Zn2+ = Fe2+,Mn2+, а также гетеровалентный изоморфизм 2Zn2+ = Ag+ + Ga3+; 2Zn2+ = Cu+ + Fe3+. Гетеровалентный изоморфизм в галените РbS осуществляется по схеме 2Pb2+ = Ag+ + Sb3+ (или Bi3+). В галените возможно также изовалентное ограниченное замещание в анионной части S2- = Se2-. Изовалентные замещения характерны также в анионных радикалах блеклых руд: [(As 1-nSbn)S3]3-, As3+ => Sb3+. В сульфидах довольно широко проявлено явление полиморфизма. Это полиморфные модификации ZnS: сфалерит, кубическая сингония и вюртцит, гексагональная сингония; FeS2: пирит, кубическая сингонияи марказит, ромбическая сингония; НgS: киноварь, тригональная сингония и метациннабарит, кубическая сингония; Fe1-xS: пирротин, гексагональная сингония и моноклинная сингония.

Сульфиды и их аналоги характеризуются ярко выраженным ковалентным типом химической связи с донорно-акцепторным характером ее проявления и существенным вкладом металлической и вандерваальсовой связей.

Изо- и гетеродесмический характер химической связи определяет разнообразие структурных мотивов в сульфидах. Среди них известны минералы с координационной, островной, цепочечной, слоистой и каркасной структурой.

Кристаллохимические особенности сульфидов, типы химической связи, состав определяют характерные для сульфидов физические свойства.

Для большинства сульфидов с ковалентно-металлическими связями характерны металлический блеск, высокая электропроводность, полупроводниковые свойства. Цвет их серый, желтоватый или бронзово-желтый. Слоистые и цепочечные сульфиды имеют низкую твердость от 1 до 2,5. Координационные моносульфиды имеют умеренную твердость от 2 до 4, а у дисульфидов и их аналогов с возрастанием доли ковалентности твердость достигает 6-6,5 единиц. Существенно ковалентные моносульфиды с координационной (сфалерит), цепочечной (киноварь), молекулярно-слоистой (аурипигмент), молекулярно-островной (реальгар) структурами отличаются алмазным блеском, полупрозрачностью, яркими окрасками, низкой и умеренной твердостью.

Сульфиды обычно образуют сплошные кристаллически-зернистые массы, вкрапленники или встречаются в виде кристаллов. Сульфиды с цепочечной структурой часто представлены агрегатами удлиненно-призматических кристаллов до тонкоигольчатых с совершенной спайностью по удлинению (антимонит). Для слоистых сульфидов характерна уплощенно-таблитчатая форма кристаллов и весьма совершенная спайность в одном направлении (молибденит, аурипигмент).

Сульфиды имеют в основном гидотермальное происхождение. Они образуются также в магматическом процессе, характерны в скарнах. В гипергенных условиях образуются в зоне вторичного сульфидного обогащения и в осадочных породах. Для метаморфических процессов и ассоциаций сульфиды не характерны. Сульфиды обнаружены в метеоритах и образцах лунного грунта.

В поверхностных условиях сульфиды (за исключением киновари) легко окисляются, переходя в сульфаты. За их счет образуются различные вторичные минералы - окислы, карбонаты, сульфаты, силикаты, а также самородные металлы.

Координационные

Цепочечные

Островные

галенит РbS куб. сфалерит ZnS куб. халькопирит СuFеS2 тетр.

киноварь HgS триг.

пирит FeS куб. марказит FeS2 ромб. арсенопирит FeAsS ромб.

Всего к классу сульфидов относят сегодня болев 250 минеральных видов, но общее содержание их в земной коре невелико и не превышает 0.15%. Широко распространены и встречаются в больших количествах около 20 из них. Наибольшее распространение имеют пирит и пирротин, на долю которых приходится около 4/5 всех известных нам сульфидов. Подавляющее же число минералов (около 200) являются редкими и наблюдаются в незначительных количествах. Роль сульфидов чрезвычайно велика как сырья для получения цветных, благородных и многих редких металлов. Особый интерес проявляется к электрофизическим и оптическим свойствам сульфидов. Их специально выращивают в виде монокристаллов, находящих применение в качестве полупроводников.

2. Геологическая деятельность ветра

Ветер - один из важнейших экзогенных факторов, преобразующих рельеф Земли и формирующих специфические отложения. Наиболее ярко эта деятельность проявляется в пустынях, занимающих около 20% поверхности континентов, где сильные ветры сочетаются с малым количеством выпадающих атмосферных осадков (годовое количество не превышает 100-200 мм/год); резким колебанием температуры, иногда достигающим 50o и выше, что способствует интенсивным процессам выветривания; отсутствием или разреженностью растительного покрова. Особенно большие площади заняты пустынями в Азии, Африке, Австралии, меньше в Европе и Америке. Кроме того, активная деятельность ветра проявляется во внепустынных областях - на побережьях океанов, морей и в крупных речных долинах, не покрытых растительностью, а местами в полупустынях и даже в умеренном климате.

Геологическая работа ветра состоит из следующих видов: 1) дефляции (лат. "дефляцио" - выдувание и развевание); 2) корразии (лат. "корразио" - обтачивание, соскабливание); 3) переноса и 4) аккумуляции (лат. "аккумуляцио" - накопление). Все указанные стороны работы ветра в природных условиях тесно связаны друг с другом, проявляются одновременно и представляют единый сложный процесс. Можно говорить лишь о том, что в одних местах преобладают одни виды процесса, в других - иные. Все процессы, обусловленные деятельностью ветра, создаваемые ими формы рельефа и отложения называют эоловыми (Эол в древнегреческой мифологии - бог ветров).

ДЕФЛЯЦИЯ И КОРРАЗИЯ

Дефляция - выдувание и развевание ветром рыхлых частиц горных пород (главным образом песчаных и пылеватых). Известный исследователь пустынь Б. А. Федорович выделяет два вида дефляции: площадную и локальную.

Площадная дефляция наблюдается как в пределах коренных скальных пород, подверженных интенсивным процессам выветривания, так и особенно на поверхностях, сложенных речными, морскими, водноледниковыми песками и другими рыхлыми отложениями. В твердых трещиноватых скальных горных породах ветер проникает во все трещины и выдувает из них рыхлые продукты выветривания.

Поверхность пустынь в местах развития разнообразного обломочного материала в результате дефляции постепенно очищается от песчаных и более мелкоземистых частиц (выносимых ветром) и на месте остаются лишь грубые обломки - каменистый и щебнистый материал. Площадная дефляция иногда проявляется в засушливых степных областях различных стран, где периодически возникают сильные иссушающие ветры - "суховеи", которые выдувают распаханные почвы, перенося на далекие расстояния большое количество ее частиц.

Локальная дефляция проявляется в отдельных понижениях рельефа. Многие исследователи именно дефляцией объясняют происхождение некоторых крупных глубоких бессточных котловин в пустынях Средней Азии, Аравии и Северной Африки, дно которых местами опущено на многие десятки и даже первые сотни метров ниже уровня Мирового океана. Одним из примеров является впадина Карагие в Закаспии, дно которой опущено на 132 м ниже уровня моря. На дне некоторых котловин в верхнем слое пород часто происходит накопление солей. Это может быть связано или с капиллярным подъемом к поверхности днищ соленых подземных вод, или с привносом солей временными пересыхающими ручьями, или с усыханием мелких водоемов. Подземные и поверхностные воды испаряются, а соли, кристаллизация которых разрывает и разрыхляет породу, превращая ее в тонкую солончаковую пыль, остаются. В жаркие безветренные дни над солончаками днищ котловин вследствие разницы в нагреве различных элементов поверхности часто возникают мощные турбулентные потоки восходящего воздуха (штопороообразные смерчи). Восходящие токи и ветер в течение лета могут вынести весь разрыхленный материал. Ежегодное повторение указанного процесса приводит к дальнейшему углублению дефляционных впадин, или котловин выдувания. Локальная дефляция проявляется также в отдельных щелях и бороздах в горных породах (бороздовая дефляция).

Страницы: 1, 2



Реклама
В соцсетях