Ландшафтно-экологические методы исследований
ишь в послевоенные годы повысился интерес к методам дешифрирования аэрофотоизображения. Географы увидели в аэрофотометодах новый многообещающий способ быстрого сбора информации на большой территории. Аэрофотометоды стали использовать во всех географических науках и в ряде смежных наук. Этому способствовало появление новых видов аэрофотосъемки: черно-белой спектрозональной, цветной и цветной спектрозональной, а также совершенствование методов дешифрирования аэрофотоизображения.

Советские географы выработали свой, весьма эффективный метод дешифрирования аэрофотоснимков -- ландшафтный. Сущность его заключается в том, что «путем анализа фотоизображения того или иного географического комплекса в целом устанавливается та его составная часть, которая непосредственно на аэрофотоснимках не отобразилась». Ландшафтный метод постепенно становится основным при различных территориальных исследованиях с применением аэрофотоматериалов.

Дешифрирование основывается на анализе прямых дешифровочных признаков: тона (или цвета), структуры, формы и размера фотоизображения, а также отбрасываемой объектами тени. Но по прямым признакам могут быть отдешифрированы лишь компоненты, непосредственно изображенные на снимках (растительность, рельеф на безлесных участках, водные объекты, незадернованные горные породы), однако и для них эти признаки позволяют получать весьма скудные данные.

Значительно возрастает объем информации, получаемой с аэрофотоснимков, при использовании косвенных дешифровочных признаков. Такими признаками являются взаимосвязи объектов и явлений в пространстве и во времени.

Косвенные признаки разнообразны, и большинство из них имеет местное значение, поэтому выявление их требует знания природных условий исследуемого района, внимательного изучения взаимосвязей между отдельными компонентами ПТК. Косвенные признаки обычно выявляются путем наземного дешифрирования аэрофотоснимков на ключевых участках, а затем используются при камеральном дешифрировании снимков на остальную территорию. Например, растительный покров служит для определения глубины залегания грунтовых вод в пустыне, а в лесной зоне переход от пойменных лугов и черноольшаников к сосновым лесам свидетельствует о смене поймы террасой и т.д.

Сочетание методов качественного анализа аэрофотоматериалов с количественными (фотометрическим, фотограмметрическим, стереограмметрическим) является наилучшим вариантом применения аэрофотометода, позволяющим полностью использовать богатое содержание аэрофотоснимков.

Аэрометод - это метод исключительно первого этапа познания - сбора фактического материала и получения информации о природных комплексах. Последующая обработка собранных данных производится уже с применением других методов: математических, сравнительного, исторического и т.д. Однако, несмотря на это, значение его в географических исследованиях чрезвычайно велико.

Дальнейшее развитие и совершенствование аэрометодов идет по пути автоматизации дешифрирования, а также в рамках аэрокосмических методов.

Геофизический метод почти столь же старый и традиционный, как сравнительный и картографический, тем не менее относится к новым точным методам исследования. Дело в том, что долгое время география и геофизика развивались как одна наука. В дальнейшем геофизические методы в географии использовались лишь при изучении наиболее динамичных компонентов -- воздушных и водных масс. Применение их к изучению таких сложных динамических систем, включающих в себя разные уровни организации материи, как природные территориальные комплексы и географическая оболочка, в целом стало качественно новым этапом в развитии геофизического метода в географии.

Геохимический метод, напротив, довольно молод. Он зародился лишь в начале XX в. на стыке химических наук и наук о Земле. Оба эти метода активно внедряются в современные комплексные физико-географические исследования, поэтому в дальнейшем они будут рассмотрены более детально.

Методы исследований, применяемые с 60 - 80-х гг. XX в.

Космические методы географических исследований начали развиваться на базе аэрометодов с 1960 г., когда был запущен первый метеорологический спутник и получен первый космический снимок Земли. Обладая основными достоинствами аэрометодов, космические методы имеют перед ними преимущество в том, что дают возможность получать в короткие сроки сопоставимую глобальную информацию о земной поверхности. Это позволяет реально перейти к целостному изучению географической оболочки Земли и слагающих ее компонентных оболочек, а также к установлению глобальных географических закономерностей.

Как и аэрометоды, космические методы относятся к дистанционным методам исследования. В настоящее время проводится несколько различных видов космических съемок (фотографическая, телевизионная, спектрометрическая, микроволновая и др.). Использование многообъективных камер делает доступным получение многозональных снимков.

Основным отличием космических снимков от аэрофотоснимков является их намного большая обзорность, зависящая, как известно, от высотного положения летательного аппарата. Если съемка с высотных самолетов производится с высоты 10 - 20 км, то с помощью ракет она ведется уже с высоты 80 - 250 км. Оптимальная высота фотографирования Земли со спутников - 200 - 1500 км. Первое глобальное изображение Земли (полушарие в целом) было получено искусственным спутником «Молния» с высоты 20- 40 тыс. км.

С помощью космических методов получают информацию предельно объективную, массовую, разнообразную, синхронную по обширным участкам географической оболочки. Это дает возможность изучать пространственно-временные изменения географической оболочки, современную структуру и динамику ПТК планетарного (глобального) и регионального уровней. Тщательный анализ космических снимков позволяет не только познавать эмпирические закономерности, но и подняться на уровень теоретических обобщений.

Космические методы наиболее тесно связаны в своем использовании с картографическим и математическими методами. Метеорология и геология пока еще остаются главными потребителями информации из Космоса. В комплексной физической географии также постепенно накапливается опыт применения космических методов. Несомненно, что космические методы будут развиваться дальше и широко использоваться в географии. Однако одной из сложных проблем их использования является огромнейший, буквально лавинный поток информации, требующий обработки и осмысления.

Математические методы издавна применялись в ряде отраслевых географических наук: климатологии, гидрологии, океанологии. О необходимости их использования в физической географии писал еще в середине 30-х гг. А.А. Григорьев. Однако пионером внедрения математических методов в комплексную физическую географию, безусловно, стал Д.Л. Арманд.

Объективные трудности применения математических методов к изучению ПТК заключаются в сложности структуры объектов исследования, в чрезвычайно слабой формализации ландшафтных понятий и недостаточной математической подготовке географов.

Известно, что ПТК представляют собой сложные динамические системы со множеством прямых и обратных связей как внутри комплекса (между его составными частями), так и с окружающей ПТК средой. Это делает ПТК принципиально вероятностными системами, для изучения которых мало подходят те разделы математики (дифференциальное и интегральное исчисление), с которыми обычно были знакомы географы. Развитие новых разделов математики, специально предназначенных для изучения сложных динамических систем, и накопленный опыт их использования в биологии и геологии облегчили внедрение математических методов в географию.

Переломным в математизации географии был 1960 г., когда на Международном географическом конгрессе в Стокгольме советские географы выступили с рядом докладов о математических методах в географии. После этого появился буквально поток работ по применению математических методов в географии, охвативший и комплексную физическую географию.

Кроме методов математической статистики и теории вероятности, широко используемых в настоящее время в физической географии, применяются также математический анализ, теория множеств, теория графов, матричная алгебра и др. Особенно большие надежды возлагаются на использование теоретико-информационных методов и кибернетики.

А.Д. Арманд (1975) считал, что не так интересен вопрос о том, какие разделы математики применяются в решении тех или иных географических задач, как важно проследить, какие математические методы используются на разных ступенях географического исследования, на разных этапах познания.

Существует также мнение о том, что не только сами географы должны выбирать для решения своих задач те или иные математические методы, а что более естествен и продуктивен путь приспособления самого математического аппарата к мышлению географа для облегчения выполнения наиболее часто повторяющихся операций.

До сих пор еще в географии наиболее широко используются вероятностно-статистические методы, необходимые для анализа протоколов наблюдений и систематизации фактических данных, т.е. на эмпирическом уровне познания. Однако при переходе на теоретический уровень для обобщений и выявления основных закономерностей географы все больше начинают использовать математический и векторный анализ, теорию информации и теорию множеств, теорию графов и теорию распознавания образов, теорию вероятности и теорию конечных автоматов. При этом резко возрастает роль таких познавательных операций, как идеализация, абстракция, гипотеза. Получение результатов исследования в виде карт, графиков, математических формул и т.д. по сути дела уже является моделированием.

Дальнейшие перспективы развития теоретического уровня в географии связаны с использованием математических и логических методов, а также методов моделирования и кибернетики.

Моделирование как метод исследования в последнее время приобретает все более широкое распространение. Оно представляет собой естественный прием познания и практической деятельности, особую форму опосредования. При моделировании между исследователем и интересующим его объектом ставится некоторое промежуточное звено -- модель. Модель должна быть похожа на оригинал, но она всегда должна чем-то отличаться от оригинала (размерами, формой, субстратом, структурой, скоростью процессов и т.д.), так как при полном совпадении модели с оригиналом исчезает сам смысл моделирования, ибо модель перестает выполнять свои функции.

В течение столетий люди пользовались моделями без специального теоретического обоснования. Возникновение моделирования как метода теоретического познания связано с появлением в конце XVII в. учения И. Ньютона о подобии. Дальнейшее его становление произошло только в XIX в., после открытия закона сохранения и превращения энергии. Но свои более развитые формы моделирование приобрело в теоретическом естествознании лишь в XX в.

В 60-70-х гг. XX в. проблемам моделирования посвящено большое количество работ, в том числе географических. В физической географии понятие «модель» трактуется очень широко. «Моделью может быть и теория, и закон, и гипотеза, и идея, обладающая определенной структурой. Моделью может быть также и роль, соотношение, уравнение или синтез данных. Для географии особенно важно, что моделями можно считать и суждения о реальном мире, получаемые с помощью переносов в пространстве (пространственные модели) и во времени (исторические модели)». А.Д. Арманд также называет моделью «любую систему, подобную другой системе, которая принимается за оригинал и служит для кого-то в чем-то заместителем оригинала».

Модели и моделирование в таком понимании не являются чем-то принципиально новым для географии. Буквально с первых шагов развития географии в ней использовались элементы моделирования и простейшие модели в виде описаний, зарисовок, а позднее схем и карт. По сути дела любые формы фиксации результатов наблюдений (протоколы наблюдений) - описания, рисунки, таблицы, профили, схемы, графики, фотографии, карты, уравнения и т.д. - являются моделями ПТК.

Классификацию моделей в применении к природным комплексам разработал А.Д. Арманд. Он различает модели природных комплексов по назначению (теоретические, поисковые, портретные);.по логическому пути построения (дедуктивные, индуктивные); по степени отражения действительности (статические, кинематические, динамические); по применению числового материала (качественные, количественные); по характеру реализации (физические, символические, идеальные); по учету случайных отклонений (детерминированные, вероятностные); по учету физической сущности моделируемого процесса (обмен веществом, обмен энергией, обмен информацией).

Значение моделирования для комплексной физической географии заключается в том, что оно позволяет в процессе упрощения изменить масштаб размерности, масштаб времени и масштаб сложности. С масштабом размерности географы имели дело с давних времен при построении карт. Изменение временного масштаба в комплексной физической географии начало практиковаться значительно позже в связи с изучением динамики ПТК. Наиболее интересным и одновременно наиболее трудным является моделирование масштабов сложности ПТК.

Моделирование как процесс познания включает в качестве обязательного этапа исследование построенной модели. Например, ландшафтная карта как модель должна не просто отражать результаты полевой проверки и уточнения предварительной ландшафтной карты, составленной еще до выезда в поле, но и давать дополнительную информацию, допустим, о морфологической структуре ПТК. Здесь уже на первый план выдвигается не образность модели, а ее способность выступать в качестве заместителя оригинала в определенных пределах, важных для исследования. Чтобы моделирование выполняло свою функцию в полной мере, необходима экстраполяция результатов изучения модели на оригинал и последующая проверка полученной информации путем сравнения с природой, с содержанием изучаемого объекта.

На разных этапах комплексных физико-географических исследований моделирование играет различную роль, и применяются, как правило, разные модели. На этапе сбора фактического материала используются преимущественно портретные символические модели, репродукционные, аналоговые. Эти модели применяются давно и широко.

На этапе получения эмпирических закономерностей, в науке обычно возрастает роль физических моделей. Это приемлемо для тех отраслевых географических наук, которые занимаются изучением неживой природы. Создание же физической модели ПТК невозможно как минимум до тех пор, пока не будут созданы модели живых организмов -- составных частей ПТК. Поэтому в комплексной физической географии на этапе получения эмпирических закономерностей используются другие модели: символические портретные и поисковые, среди которых все большее значение приобретают математические модели. Находят применение также модели-представления.

На теоретическом этапе познания должны прежде всего использоваться идеальные модели, модели-представления. Перспективным для дальнейшего развития комплексной физической географии представляется использование преимуществ кибернетического моделирования как метода теоретического осмысления сложных динамических систем. Оно опирается на принцип статистической связи функции и структуры и является функциональным. Центральное место в нем занимает не рассмотрение сложной динамической системы самой по себе, а зависимости функционирования системы от среды, характеристика ее поведения в определенной среде. Этот аспект кибернетического моделирования особенно привлекает географов в связи с разработкой географических прогнозов.

Таким образом, модели в географии используются давно, однако в настоящее время резко возросла роль теоретического моделирования, почему и метод моделирования отнесен к новейшим.

С проблемой моделирования тесно перекликается задача построения банка географических данных, который должен представлять собой автоматизированную систему обработки и анализа информации. Нужно, чтобы такая система позволяла хранить, накапливать, систематизировать, комбинировать и перерабатывать географические данные для любых целей и в любой последовательности.

ЛЕКЦИЯ 2

ОБЪЕКТ ИССЛЕДОВАНИЙ

2.1 Географическая оболочка и природные территориальные комплексы

Объектом изучения комплексной физической географии являются географическая оболочка как целостное природное образование, особая планетарная система и слагающие ее природные территориальные и аквальные комплексы разной размерности, которые обособились в процессе развития географической оболочки.

Являясь целостным образованием, географическая оболочка неоднородна внутри себя. В вертикальном направлении она распадается на ряд компонентных (частных) оболочек (литосферу, гидросферу, атмосферу, биосферу, педосферу), в каждой из которых преобладает вещество в определенном агрегатном состоянии или форме его организации. Вещество частных оболочек формирует различные компоненты природы: рельеф с образующими его горными породами, почвы с корой выветривания, водные и воздушные массы, сообщества растений и животных (биоценозы). Между компонентными оболочками происходит обмен веществом, энергией и информацией, объединяющий эти разнокачественные оболочки в качественно новое целостное единство, свойства которого не сводятся к свойствам суммы слагающих его частей. Изучением компонентных оболочек как составных частей более сложного целого занимаются отраслевые физико-географические науки (геоморфология, гидрология, климатология, почвоведение, биогеография), материалы которых физико-географы используют в своих исследованиях.

Горизонтальная неоднородность географической оболочки выражается в существовании природных территориальных и природных аквальных комплексов (соответственно ПТК и ПАК) - исторически обусловленных и территориально ограниченных закономерных сочетаний взаимосвязанных компонентов природы. Их обособление связано с территориальной дифференциацией энергии, обусловленной формой и происхождением планеты Земля: различным количеством лучистой энергии, поступающей из Мирового пространства, и внутренней энергии Земли, получаемой тем или иным участком географической оболочки.

И вертикальная, и горизонтальная неоднородность географической оболочки возникла в процессе ее формирования и развития, но вертикальная дифференциация (на геосферы) обусловлена, прежде всего, дифференциацией вещества, а горизонтальная (на ПТК) связана главным образом с пространственной дифференциацией энергии. Так как подавляющая часть энергии поступает в географическую оболочку извне и подвержена значительным изменениям в пространстве и во времени, горизонтальная дифференциация менее устойчива, более динамична и постоянно усложняется в процессе развития географической оболочки. В результате этого в пределах географической оболочки сформировалось большое количество ПТК разной величины и различной степени сложности, как бы вложенных друг в друга и представляющих собой систему соподчиненных единиц, определенную иерархическую лестницу, так называемую таксономическую систему. Чем крупнее комплекс, чем выше его ранг, тем больше неоднородность внутри него, тем более заметно его внутреннее многообразие, тем ярче выражена его индивидуальность, неповторимость, непохожесть на соседние комплексы.

Общепринятой таксономической системы ПТК в физической географии пока еще нет. Наиболее широко распространенной является следующая система комплексов: географическая оболочка - суша - материк - страна - зона (горная область) - провинция - район - ландшафт - урочище - фация. Наряду с ней существуют и другие системы, в том числе и двухрядные, имеющие на своих верхних ступенях самостоятельные системы зональных (географический пояс - зона - подзона) и азональных (суша - континент - субконтинент - страна) единиц.

Каждый более мелкий комплекс возникает и обособляется в процессе развития вмещающего его более крупного ПТК, поэтому, чем мельче комплекс, тем он моложе, тем проще устроен и тем более динамичен. Исключение составляют лишь реликтовые комплексы, входящие в состав более крупных, но более молодых.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать