Новые результаты моделирования гидравлических характеристик дилювиальных потоков из позднечетвертичного Чуйско-Курайского ледниково-подпрудного озера
p align="left">Эта теория в общих чертах подтверждается массивом абсолютных датировок (TL, 14C, 10Be), полученных в других районах Алтая (табл. 2). Предварительный анализ этих дат с учетом последних публикаций [10-12] позволяет наметить хронологию водноледниковых потопов на Алтае: около 7 тыс. л.н.; около 12 тыс. л.н.; около 15 тыс. л.н.; около 17 тыс. л.н.; после 22 тыс. л.н. и после 23 тыс. л.н. В действительности, паводков с расходами более 1 млн. м3/с было гораздо больше, поскольку каждый прорыв котловинного ледниково-подпрудного озера мог следовать сразу же за подпруживанием котловин и блокированием стока. Ошибки же определения абсолютного возраста паводковых событий на несколько порядков превышают длительность водноледниковых катастроф [10], которая составляла от нескольких минут и дней ([22, 28], (а также - настоящая работа) до нескольких недель [18].

Таблица 2. Абсолютные датировки дилювиальных, дилювиально-озерных и озерных отложений Алтая [12] Датировки взяты из работ П. Карлинга, Г. Бялко, Ю. Хергета, А.М. Малолетко, В.А. Панычева и Г.Г Русанова (работы [12])

Адрес

Метод

Абс. возраст, лет

Гигантские знаки ряби течения

Яломанской котловины

TL

7400±0.8

6200±0.7

Гигантская рябь течения

Платово-Подгорное

10Be

14C

12700±200

17900±1799

12510±160

36000±4000

Мергели и ископаемые остатки в Северном Алтае, ассоциированные с образованием Айских эворзионно-кавитационных котлов

14C

13890±200

12750±65

Курайская котловина, растительные остатки из озерных отложений в пинго (ур. Джангысколь)

14С

10845±80

10960±50

Дилювиально-озерная толща

в левобережье р. Инюшка

14С

TL

23359±400

(средняя пачка)

22275±370

(верхняя пачка)

22400±3200 (верхняя пачка)

Долина р. Бии в районе с. Чоя

14C

Подстилающий аллювий - 18620±300

Перекрывающий дилювий -

17600±500

17200±245

Другая проблема сопоставления датировок по дропстоунам из котловин Юго-Восточного Алтая и из Яломанской котловины состоит в том, что связь гляциальных суперпаводков из Чуйского и Курайского ледниково-подпрудных озер с образованием дилювиального рельефа Центрального Алтая пока еще далеко не доказана. Ведь выше Яломанской котловины по катунскому каналу дилювиальных стоков расположены обширные Уймонская, Абайская и Канская котловины, которые также в ледниковое время подпруживались льдом и продуцировали мощные йокульлаупы, производившие большую геологическую работу, впечатляющим примером которой, в частности, могут быть трехсотметровые толщи дилювия, заполняющие долину р. Катуни выше устья р. Чуи [10].

В заключение отметим, что, возможно, приведенные новые 10Ве-датировки показывают время одного из самых мощных гляциальных суперпаводков Алтая, относящегося к последним по времени и крупнейшим по объемам ледниково-подпрудным озерам в Чуйской и Курайской котловинах, поскольку проанализированные дропстоуны лежат на поверхности их днищ, не «утоплены» в донные осадки. Это также означает, что краевые моренные комплексы, обрамляющие южную периферию этих котловин и относившиеся к максимуму последнего оледенения (например, в работах П.А. Окишева), в действительности: 1) моложе 15 тыс. лет, потому что они террасированы береговыми линиями с датированными дропстоунами; 2) никак не могут регистрировать ледниковый максимум в горах Алтая, так как ледники максимального оледенения подпруживали котловины более молодых озер (датировки приведены в настоящей статье). В центральных частях котловины озер ледники горного обрамления выходили в эти хронологические интервалы на плав, то есть становились «шельфовыми» и не продуцировали конечные морены. Максимальные абсолютные высоты поздневюрмских береговых линий в Чуйской котловине, как сказано, достигают 2250 м, т.е. намного превышают отметки днищ современных трогов окружающих гор (например, долина р. Актру имеет по простиранию висячего по отношению в Курайской впадине трога отметки 2000-2150 м).

Обсуждение результатов

В задачи данного исследования не входило вычисление максимальных расходов дилювиальных потоков. Как видим, применение более корректной модели расчета гидравлических характеристик дилювиальных потоков на ключевом участке, с одной стороны, показало геологическую достоверность реальности трудно представимых себе расходов и скоростей воды при прорыве ледниково-подпрудных озер (в чем многие в России, в частности, еще сомневаются), и, с другой, - безусловно, катастрофический характер опорожнения этих озер.

В частности, геолог И.А. Новиков в одной из последних монографий определенно писал, что точка зрения А.Н. Рудого и В.В. Бутвиловского на большие масштабы прорывов палеоозер ошибочна, последние сильно преувеличены, реальные скорости и объемы воды меньше чем на порядок (то есть, гораздно менее 1 млн м3/с) [4]. Вместе со своим коллегой он предложил альтернативные данные [5], где еще более определенно пишет, что плотины были преимущественно тектоническими, а опорожнения не носили катастрофический характер ([5] с. 236). Примечательно, что еще позже, в предисловии к книге И.Д. Зольникова и А.А. Мистрюкова [3], И.А. Новиков уже пишет, что убедился в правильности взглядов А.Н. Рудого и В.В. Бутвиловского, но не в результате «пламенной риторики первооткрывателей (т.е. - нас с В.В. Бутвиловским)», а «взвешенного подхода и аргументации в работах С.В. Парначева (которые появились раньше, чем И.С. Новиков сам же, с тем же с С.В. Парначевым, отрицал катастрофичность дилювиальных потоков вообще) [5].

В третьих, эта модель показывает путь для вычисления гидравлических параметров при любых объемах озер и метках стояния высоких вод в долинах стока. Здесь для расчета были приняты минимальные абсолютные высоты уровней озер и, соответственно, плотин. Такой подход был применен сознательно, чтобы продемонстировать, что и при таких, пессимистических, оценках объемов озерных вод, расходы дилювиальных потоков были колоссальными.

До сих пор большая часть оценок площадей и объемов ледниково-подпрудных озер, занимавших межгорные впадины горных сооружений юга Сибири, производилась по гипсометрии озерных террас. При этом различия в определениях максимальных абсолютных высот зеркала крупнейшего и наиболее изученного в горах Сибири Чуйско-Курайского ледниково-подпрудного озера поздневюрмского возраста у разных исследователей составляют десятки и сотни метров. Такие различия дают и огромные несовпадения (в сотни кубических километров) в объемах озер, площади которых при самых острожных подсчетах могли достигать нескольких тысяч квадратных километров. Объемы воды катастрофически прорывающихся ледниково-подпрудных озер являются одним из непременных параметров любых моделей расчетов гидравлических характеристик прорывных суперпаводков, поэтому точная топографическая привязка геологических следов ледниково-подпрудных озер исключительно важна для палеогидрологических реконструкций.

Так, в самой последней работе ([22] со ссылкой на работы П.Э. Карлинга [18]) максимальные высоты абразионных террас в котловинах не превышают 2100 м, при этом максимальный объем названного озера достигал 607 км3. Очень близкие объемы приводятся в работах П.А. Окишева и П.С. Бородавко [7] при оценке высоты озерных террас также в 2100 м (хотя в монографии первого есть и другая цифра - 2050 м [6]). По данным И.С. Новикова и С.В. Парначева [5], предельный уровень береговых линий достигал здесь 2150 м. А.Н. Рудой по аэрофотоснимкам определил предельный уровень береговых линий в 2200 м, при котором суммарный объем озер составил более 1030 км3 [27-29]. Г.Г. Русанов [13] при крупномасштабном геологическим картировании обнаружил абразионные террасы на некоторых участках южного склона Курайского хребта на горизонтали 2250 м.

Между тем очень информативным показателем высот зеркала озер являются поля дропстоунов, часто четко привязанные к определенным гипсометрическим уровням, а также остатки озерных отложений на бортах впадин на разных высотах. Петрографический состав дропстоунов могут служить показателем направления палеотечений от мест коренного залегания. Так, еще во время съемочным работ 1978-1979 гг. были закартированы дропстоуны на северном макросклоне хр. Сайлюгем, в урочищах Оюм и Бураты, точно привязанные к горизонталям 2020, 2030 и 2060 м. Это - роговики, гранодиориты и гнейсы (полевое определение Г.С. Романцовой [8]).

На участке борта Чуйской впадины между устьем долины Бураты и вершиной и с абс. отм. 2129,7 м, расположенном в 2 км южнее Чуйского тракта, борт котловины осложняют два лога, открывающихся на восток, с пологими и плоскими днищами, выполненными до высоты 2100 м озерными разнозернистыми неокатанными песками, насыщенными дресвой, плохо окатанной галькой и гравием местных пород. Эти лога были в прошлом заливами Чуйского ледниково-подпрудного озера.

На этом участке от подножья борта котловины и до абсолютной отметки 2120 м тянется серия из более десятка озерных террас. В направлении с севера на юг от вершины с отметкой 2129,7 м к устью долины Бураты отмечен четкий перекос террас, особенно нижних наиболее крупных и хорошо выраженных в рельефе. С севера на юг вдоль борта котловины на протяжении 600-900 м они повышаются на 5-10 м.

Озерные террасы огибают и вершину с отметкой 2129,7 м, располагаясь серией по ее северному и западному склону. На западном склоне этой вершине на абсолютной высоте 2070 м на площадке озерной террасы имеется плохо окатанный валун, диаметром по крупной оси около метра, сложенный гранито-гнейсами, и занесенный айсбергом с Курайского хребта или с западной части Южно-Чуйского хребта (верховья бассейнов Елангаша и Чагана). На склонах хребта Сайлюгем, имеющих западную и северо-западную экспозицию, и опускающихся в Чуйскую котловину, следы ледниково-подпрудного озера четко выражены до абсолютных отметок 2100-2120 м. Выше этих горизонталей интенсивно развита современная солифлюкция, ни озерных песков, ни террас и дропстоунов здесь не обнаружено. Вероятно, как полагает первый автор, во время последнего оледенения эти склоны хребта на разных участках от высот 2000 м и выше были покрыты ледниковым льдом, обрывавшимся в озеро, о чем свидетельствуют сглаженные и отполированные до блеска выходы коренных пород, сохранившиеся местами до настоящего времени.

При заполнении водой котловин до горизонтали 2100 м и выше ледниково-подпрудные озера в Курайской и Чуйской котловинах соединялись и образовывали единое озеро. Как отмечал еще 20 лет назад Г.Г. Русанов (личное сообщение), ледниковая плотина занимала все понижение между Курайским и Чуйским хребтами, заполняя древнюю и современную долины Чуи ниже урочища Боротал, при этом полностью перекрывая расположенное между ними плато Белькенек с абсолютной высотой 2264 м. В ходе геологической съемки на этом плато были повсеместно установлены свежие следы древнего оледенения в виде ледниковых шрамов и штрихов, и также разнообразной эрратики, распространенной до высоты 2250 м. Петрографический состав этой эрратики, по данным Г.Г. Русанова, указывает на то, что в образовании ледниковой подпруды участвовали ледники, спускавшиеся с Курайского и Северо-Чуйского хребтов.

Таким образом, абсолютные отметки ледниковой плотины, блокировавшей сток по долине Чуи в районе плато Белькенек в конце максимума последнего оледенения превышали 2300 м, возможно, как допускают А.Н. Рудой и В.В. Бутвиловский - и 2400 м. В последнем случае при максимальном заполнении впадин сток из них мог осуществляться через водораздельные спиллвеи, установленные этими исследователями. Отсутствие же на этих высотах на бортах впадин абразионных и аккумулятивных террас объясняется тем, в максимумы трансгрессий озерные воды контактировали не с коренными бортами впадин, а с глетчерным льдом, спускавшимся в котловины со всех сторон и переходившие на плав. В этих случаях максимальные объемы озерных вод могли достигать 3500 км3. Достоверные, не вызывающие сомнений и выраженные в рельефе и отложениях уровни заполнения Чуйской котловины водами ледниково-подпрудного озер, приурочены к горизонтали 2250 м. Даже при этих высотах зеркала площадь Чуйско-Курайского водоема достигала нескольких тысяч квадратных километров.

Заключение. В результате моделирования рассчитаны в динамике такие характеристики прорывных паводков, как расходы, скорости движения воды, кривые свободной поверхности, что позволило уточнить ранее полученные другими методами значения и расширить представления о формировании и движении прорывных паводков в долине горной реки.

Применяя предложенную нами модель, можно рассчитать гидравлические параметры не только для различных уровней зеркала озерных вод, но и максимальные расходы, скорости и глубины дилювиальных потоков, которые, имея ввиду приведенные только что абсолютные отметки следов ледниково-подпрудных озер, значительно превосходили приведенные нами цифры порядка 1 млн. м3/с. Данная работа, таким образом, имеет в том числе и методический характер, что подразумевает продолжение исследований для различных высотных меток стояния озерных вод и высот поверхностей прорывных паводков не только в относительно хорошо изученных котловинах и долинах стока, но и на других подобных территориях.

Итак, все котловины Южной Сибири могли катастрофически, одновременно и неоднократно поставлять на север десятки тысяч кубических километров паводковых вод. Возможны два палеогидрологических сценария:

1) регулярное поступление огромных масс воды в поздне - послеледниковое время в акваторию Полярного бассейна в случае отсутствия ледниковой преграды на севере Азии, которая блокировала бы сток Оби и Енисея;

2) регулярный и катастрофический сброс колоссального количества вещества и энергии на юго-запад, через Мансийское ледниково-подпрудное озеро в Западной Сибири, Тургайский, Узбойский и Манычский спиллвеи в бассейн Средиземного моря.

Оба сценария подразумевают сильные изменения температуры, солености и циркуляции в соответствующих секторах Атлантики или Северного океана.

Резюмируя в целом, отметим, что в реконструированной, крайне агрессивной природной среде в позднем плейстоцене и раннем голоцене южного обрамления Западной Сибири огромной важности проблему, на наш взгляд, представляет восстановление реакции биоты на палеогеографические изменения, причем как отдельных видов, так и сообществ.

Литература

1. Бутвиловский В.В. Палеогеография последнего оледенения и голоцена Алтая: событийно-катастрофическая модель. - Томск: Томск. ун-т, 1993. 252 с.

2. Галахов В.П. Имитационное моделирование как метод гляциологических реконструкций горного оледенения. - Новосибирск: Наука, 2001. 136 с.

3. Зольников И.Д., Мистрюков А.А. Четвертичные отложения и рельеф долин Чуи и Катуни. - Новосибирск: СО РАН, 2008. 182 с.

4. Новиков И.С. Морфотектоника Алтая. - Новосибирск: Наука, 2004. 313 с.

5. Новиков И.С., Парначев С.В. Морфотектоника позднечетвертичных озер в речных долинах и межгорных впадинах Юго-Восточного Алтая. - Геология и геофизика, 2000, т. 41, №2, с. 227-238.

6. Окишев П.А. Динамика оледенения Алтая в позднем плейстоцене и голоцене. - Томск: Томск. ун-т, 1982, 209 с.

7. Окишев П.А., Бородавко П.С. Реконструкция «флювиальных катастроф» в горах Южной Сибири и их параметры. - Вестн. Томск. госуниверситета, 2001. Т. 274. С. 3-12.

8. Рудой А.Н. Развитие речных долин бассейна Чуйской котловины в связи с особенностями четвертичного оледенения / Регион. конф. «Эволюция речных долин Алтайского края и вопросы практики». - Барнаул, 1982. С. 64-67.

9. Рудой А.Н. Основы теории дилювиального морфолитогенеза. - Известия Русского географического общества, 1997. Вып. 1. С. 12-22.

10. Рудой А.Н. Гигантская рябь течения (история исследований, диагностика, палеогеографическое значение). - Томск: ТГПУ, 2005. 224 с.

11. Рудой А.Н. Гигантская рябь течения (история исследований, диагностика и палеогеографическое значение) // Материалы гляциологических исследований, 2006. Вып. 101. С. 24-48.

12. Рудой А.Н., Браун Э.Г., Галахов В.П., Черных Д.В. Новые абсолютные датировки четвертичных гляциальных паводков Алтая. - Изв. Бийского отделения РГО. 2006. Вып. 26. С. 148-151

13. Русанов Г.Г. Максимальный уровень Чуйского ледниково-подпрудного озера в Горном Алтае - Геоморфология, 2008. №1. С. 65-71.

14. Baker V.R. Paleohydrology and sedimentology of Lake Missoula Flooding in Eastern Washington. - Gel. Soc. Am. Spec. Pap., 1972. Vol. 6. 79 p.

15. Baker V.R., Benito G., Rudoy A.N. Paleohydrology of late Pleistocene Superflooding, Altay Mountains, Siberia. - Science, 1993. Vol. 259. Р. 348-352.

16. Barkau R.L. UNET, One-Dimensional Unsteady Flow Through a Full Network of Open Channels. Computer Program. - St. Louis, Mo. 1992.

17. Brunner G.W. HEC-RAS River Analysis System - User's manual, version 3.0 / Hydraulic referece manual. Davis (U.S. Army Corps of Engineers), 2001. 262 P.

18. Carling P.A. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. - Sedimentology. 1996. Vol. 43. P. 647-664.

19. Clague J.J., Mathews W.H. The Magnitude of Jokulhlaups. - J. Glacilogy, 1873. Vol. 13. P. 501-504.

20. Costa J.E. Floods from dam failures. // Flood geomorphology. - N.Y.: John Wiley & Sons, 1988. P. 439-463.

21. Feldman A.D. HEC Models for Water Resources System Simulation: Theory and Experience. / Advances in Hydrosciences. - N.Y., 1981. P. 297-423.

22. Herget J. Reconstruction of Pleistocene Ice-Dammed Lake Outburst Floods in the Altai Mountains, Siberia. - Geol. Soc. America. 2005. Spec. Pap. 386. 118 p.

23. Herget J. & Agatz H. Modelling ice-dammed lake outburst floods in the Altai Mountains (Siberia) with HEC-RAS. - V.R. Thorndyraft, G. Benito, M. Barriendos and M.C. Llasat. Palaeofloods, Historical Floods and Climate Variability: Application in Flood Risk Assesment, 2003. (Proc. Of the PHEFRA Workshop. Barselona, 16-19th Okt., 2002).

24. O'Connor J.E., Baker V.R. Magnitudes and implications of peak discharges from glacial Lake Missoula. - Geol. Soc. Am. Bull., 1992. Vol. 104. P. 267-279.

25. Pardee J.T. Unusual currents in glacial Lake Missoula, Montana // Geol. Soc. Am. Bull., 1942. V. 53. P. 1569-1600.

26. Reuther A.U., Herget J. Ivy-Ochs S. et. al. Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenoc in situ 10Be. - Geology. 2006. Vol. 43. №11. P. 913-916.

27. Rudoy A.N. Mountain Ice-Dammed Lakes of Southern Siberia and their Influence on the Development and Regime of the Runoff Systems of North Asia in the Late Pleistocene. Chapter 16. (P. 215-234.) Palaeohydrology and Environmental Change / Eds: G. Benito, V.R. Baker, K.J. Gregory - Chichester: John Wiley & Sons Ltd. 1998. 353 p.

28. Rudoy A.N. Glacier-Dammed Lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains // Quaternary International. 2002. Vol. 87/1. P. 119-140.

29. Rudoy A.N., Baker V.R. Sedimentary Effects of cataclysmic late Pleistocene glacial Flooding, Altai Mountains, Siberia // Sedimentary Geology, 1993. Vol. 85. №1-4. Р. 53-62.

30. US Army Corps of Engineers. Hydrologic Engineering Center. HEC-RAS, River Analysis System User's Manual. Version 4.0. Davis, CA, 2008. 747 p.

31. US Army Corps of Engineers. Hydrologic Engineering Center. HEC-GeoRAS. An extension for support of HEC-RAS using ArcView. User's Manual. Version 3.1. Davis, CA, 2002. 154 p.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать