Хімічна промисловість України

Хімічна промисловість України

Зміст

  • Вступ
  • Розділ 1. Загальна характеристика
  • Розділ 2. Основні галузі хімічної промисловості
    • 2.1 Виробництво хімічних речовин
    • 2.2 Виробництво органічних речовин: виробництво мила
    • 2.3 Виробництво сталі
    • 2.4 Виробництво паперу
  • Розділ 3. Інновації та перспективи розвитку хімічної промисловості України
  • Висновки
  • Список використаної літератури
Вступ

Хімічний комплекс охоплює галузі промисловості, що виробляють сировину й конструкційні матеріали. Найважливішою галуззю в цьому комплексі є виробництво з неорганічних та органічних речовин різних хімічних сполук для інших промисловостей. Сировинна бази хімічної промисловості диференціюється залежно від природних та економічним особливостей окремих країн та регіонів. В одних районах - це вугілля, коксовий газ, в інших - нафта, сумішні нафтові гази, солі, сірчаний колчедан, газові відходи чорної та кольорової металургії, у третіх - кухонна сіль тощо. Сировинний фактор впливає на спеціалізацію окремих територіальних поєднань хімічних виробництв. Хімічне виробництво в міру вдосконалення технологічних методів може, в свою чергу, впливати на сировинну базу.

Розвиток хімічної промисловості потребує все більшого акцентування уваги на розробці та впровадженні високоефективних енерго- та ресурсозберігаючих, а також екологічно чистих технологій.

Мета роботи - дати характеристику хімічної промисловості України та її стану на даний час.

Основні завдання роботи:

1) охарактеризувати хімічну промисловість України;

2) провести аналіз основних галузей хімічної промисловості та основних виробництв;

3) розглянути основні напрямки вдосконалення та розвитку хімічної промисловості на Україні.

Розділ 1. Загальна характеристика

Хімічна промисловість пов'язана з багатьма галузями. Вона комбінується з нафтопереробною, коксуванням вугілля, чорною та кольоровою металургією, лісовою промисловістю. Завдяки складній системі зв'язків утворюються такі або інші поєднання виробництв, з яких формуються міжгалузеві комплекси. До таких комплексів належить і хіміко-лісовий. В одних випадках роль хімічної промисловості у цих комплексах провідна, в інших вона не має формуючого значення, лише доповнюючи усталену систему зв'язків. Проте загалом хімічну промисловість слід розглядати як головну галузь, що визначає склад і напрям розвитку комплексу. Здебільшого лісова промисловість розглядається у цьому комплексі як постачальник деревини для хімічної промисловості. Хімічна промисловість має дуже складну галузеву структуру, що охоплює близько 200 взаємопов'язаних виробництв з великою номенклатурою продукції. Ці виробництва об'єднані у три великі групи: неорганічна або основна хімія, хімія органічного синтезу та гірничо-хімічна промисловість.

Неорганічна хімія переважно виробляє напівфабрикати, що використовуються в інших галузях промисловості. Виняток становлять мінеральні добрива, які виробляє певна галузь.

До органічної хімії відносяться виробництва вуглеводної сировини, органічних напівфабрикатів, синтетичних матеріалів. Основною сировиною для хімії органічного синтезу є вуглеводні нафти, природний та попутний газ. Використовуються також вуглеводні сполуки, що одержуються з вугілля.

Гірничо-хімічна промисловість утворює сировинну базу передусім для неорганічної хімії.

Розглянемо деякі хімічні галузі окремих країн світу. Хімічна промисловість розташована передусім у розвинутих країнах. Лише у США виробляється понад чверть, а в шістьох найрозвинутіших країнах - понад 3/4 хімічної продукції світу.

Закономірність розвитку хімічної промисловості у США пояснюється наявністю на їх території чималої кількості практично усіх видів хімічної сировини: нафти, газу, солей, фосфоритів тощо. Інші розвинуті країни значно залежать від імпорту хімічної сировини.

Розвинені країни мають потужну багатогалузеву хімічну промисловість. Навпаки, у невеликих країнах розвинута переважно одна галузь. Наприклад, у Швейцарії - фармацевтична, у Нідерландах - гумовотехнічна промисловість.

Основна хімія як галузь обіймає кислотну, содову промисловість та виробництво мінеральних добрив. Родовища природної сірки розташовані переважно в США, Канаді, Мексиці, Італії, і пластмасові вироби), Запоріжжі (кремній-органічні сполуки, синтетичні смоли), Дніпродзержинську (полівініл, полістирол), а також Калуші, Одесі, Києві, Фастові, що виробляють хімічну продукцію і стали центрами переробки синтетичних смол на пластмасові, плівкові та інші вироби.

Промисловість хімічних волокон. Найбільші підприємства розміщені у Чернігові, Києві (Дарницький шовковий комбінат), Черкасах.

Розділ 2. Основні галузі хімічної промисловості

2.1 Виробництво хімічних речовин

Аміак - безколірний газ з різким характерним запахом, вдвоє псі ший ш повітря, легко зріджується (температура кипіння - 33,4°С). Аміак дуже добре розчиняється у воді (при 20°С в 1 об'ємі води розчиняється 700 об'ємів аміаку). Розчин аміаку у воді називають аміачною водою або нашатирним спиртом. При взаємодії аміаку з водою утворюється гідрооксид амонію (NН4ОН) - слабка основа, котра існує лише у водних розчинах. З кислотами аміак (А) дає відповідні солі амонію. При дії аміаку на солі деяких металів утворюються комплексні сполуки - аміакати. Лужні та лужноземельні елементи реагують з аміаком, утворюючи в залежності від умов нітриди або аміди металів. На каталітичному окисненні аміаку (до окисів азоту) грунтується один з методів виробництва нітратної кислоти. У природі аміак утворюється в процесі розкладання (гниття) нітрогеновмісних органічних речовин. Основний промисловий метод утворення аміаку синтез його в присутності каталізаторів за високої температури та високому тиску з азоту, повітря та водню. Аміак використовується для добування нітратної кислоти та її солей, гідроокису амонію і солей амонію, сечовини, соди за аміачним способом та ін. Аміак застосовується в органічному синтезі як холодоагент, для азотування стилі, у медицині (нашатирний спирт). Азот утворює з воднем декілька спонук, і яких НАЙВАЖЛИВІШОЮ Є аміак.

Структурна формула аміаку (N11,):

У лабораторних умовах аміак виробляють слабким нагріванням суміші хлориду амонію з гашеним вапном:

2МН4СІ + Са(ОН)2 =СаО2+2ИНг +Ї2Н2О.

Аміак, що утворився, висумішують негашеним вапном (СаО), але не хлоридом кальцію або концентрованою сірчаною (сульфатною) кислотою, з якими він вступає в хімічну взаємодію.

Основним промисловим способом утворення аміаку є синтез його з азоту і водню. Реакція екзотермічна і зворотна:

ДГ2 + ЗЯ2 о 2Л7/3 + 92,4 кДж.

Вона протікає тільки в присутності каталізатора - металевого заліза і домішкою оксиду амонію та оксиду калію.

Початкові продукти виробляють: азот - з рідкого повітря, водень - конверсійним способом або з води. Теорія синтезу аміаку з простих речовин складна. Тут тільки вказують оптимальні умови процесу, що ґрунтуються на принципі Ле-Шательє. Оскільки ця реакція екзотермічна, то зниження температури зміщуватиме рівновагу в бік утворення аміаку. Однак при низьких температурах швидкість всіх реакцій мала. Тому синтез аміаку проходить при 450-500°С і в присутності каталізатора. У зв'язку з тим, що каталізатор прискорює пряму та зворотну реакцію однаково, а підвищення температури зміщує рівновагу ліворуч, то ці умови невигідні для промислового виробництва. Тобто, за принципами Ле-Шательє, для протидії цьому впливу підвищення температури необхідно використовувати високий тиск. Тиск завжди застосовують такий, який витримує матеріал апаратури - до 1000 атм (100 МПа). Негативно впливають на швидкість утворення суміші: сірководень, оксид вуглецю (II), вода та інші сполуки. Вони знижують активність каталізаторів. Тому азото-водневу суміш піддають ретельному очищенню, особливо від сірчаних сполук.

Однак і за цих умов тільки частина азотоводневої суміші перетворюється на аміак. Для більш повного використання початкових речовин утворений аміак зріджують під впливом низьких температур, а нереагуючу частину азотоводневої суміші вдруге направляють до реактора.

Технологічний процес, при якому нереагуючі речовини відділяються від продуктів реакції і знову повертаються в реакційний апарат для повного використання, називається циркуляційним. Завдяки такій циркуляції використання азотоводневої суміші вдається довести до 95%.

2.2 Виробництво органічних речовин: виробництво мила

Милами звуть лужні сполуки натрієвих і калієвих солей жирних, смоляних, нафтенових кислот, що мають у ланцюгу 10-20 атомів вуглецю. Такі солі мають характерні властивості, які обумовлюють їх миючу дію: вони добре розчиняються у воді, їх водні розчини мають піноутворюючі, емульгуючі та змочувальні властивості, можливість утримання забруднюючих часток у миючому розчині.

Варіння мила - це основна технологічна ланка. Вона ґрунтується на реакціях омилення нейтрального жиру розчинами лугів (№ОН, КОН) і нейтралізації жирних, смоляних та нафтенових кислот кальцинованою содою або поташем:

де К - вуглецевий радикал вищої карбонової кислоти.

Сировиною для варіння є жири, луги та жирозамінники. Залежно від застосування мила, а також від сортності роблять рецептуру жирової суміші. В рецептуру жирової суміші входять і жирозамінники - синтетичні жирні кислоти, а також каніфоль - складна суміш смоляних кислот. Нафтенові кислоти застосовують для варки технічного мила м'якої консистенції. Омилення жирових сумішей розчинами лугів призводить до прямого методу - варіння мильного клею, охолодженням якого отримують клейове мило; і непрямого методу: обробка мильного клею електролітами (висолювання) та відділення мильного ядра з послідовним охолодженням та наданням милу товарного вигляду. Варіння мила на основі жирних кислот розщеплених та систематичних - проводять за допомогою кальцинованої соди. Це так зване карбонатне омилення економічно доцільніше, оскільки використовується дешева сировина.

Знижена концентрація лугу призводить до утворення нерозчинного у воді кислого мила:

R-СООNа + R-СОО > R-СООNaR - СООН.

Мило у водних розчинах може гідролізуватися з утворенням великого лугу:

R - СООNa + Н2О <=> R- СООН + Na104.

який негативно впливає на кольоровість вовняних, шовкових та багатьох синтетичних тканин.

Мило не може застосовуватися у кислих середовищах, бо воно розпадається з виділенням жирних кислот:

R - СООNа + Н2SО4 > R - СООН + Na2SО4

2.3 Виробництво сталі

Сталь є основним сплавом, що використовується в усіх галузях сучасної техніки для виготовлення найрізноманітніших конструкцій, машин та їх деталей. Сталь, як і чавун, являє собою сплав заліза з вуглецем та іншими домішками, але відрізняється від нього меншим вмістом їх. Тому процес одержання сталі з чавуну зводиться до окислення домішок чавуну до потрібних меж чистим киснем або киснем повітря чи руди. Цього досягають двома способами: конверторним та мартенівським.

Конверторний спосіб. Суть конверторного способу полягає в тому, що через рідкий чавун, залитий у конвертор, продувається повітря, кисень якого окислює вуглець та домішки. Конвертор являє собою стальну посудину грушоподібної форми, викладену всередині вогнетривкою кладкою завтовшки 275-400 мм (мал. 1). У верхній частині конвертора є горловина І. Середня частина конвертора оперезана зовні стальним кільцем. До кільця приєднано дві цапфи, які спираються на колони, встановлені на фундаменті. Через порожнисту цапфу 2 в конвертор надходить повітря з повітропроводу. На кінці другої цапфи 3 насаджене зубчасте колесо, з'єднане з зубчатою рейкою 4. Рейка переміщується від електродвигуна або гідропривода. Під час руху рейки конвертор повертається на потрібний кут, набираючи горизонтального, вертикального або похилого положення. В нижній частині конвертора є змінне днище 5, зроблене з вогнетривкої цегли. У днищі є канали, в яких запресовано труби - фурми 6. Через фурми в конвертор вдувається повітря.

Для заливання чавуну і завантаження добавок конвертор повертають у горизонтальне положення, трохи нахиляють вниз горловиною (мал. 2,а) і заливають таку кількість чавуну, щоб рівень його був нижче рівня фурм. Потім починають вдувати повітря, повільно повертаючи конвертор. Тиск повітря поступово збільшують, доводячи до 0,25 МПа (2,5 атм) при вертикальному положенні конвертора (мал. 2,б).

При продуванні внаслідок активного зіткнення рідкого чавуну з киснем повітря відбувається процес окислення (вигоряння) домішок.

Після закінчення процесу конвертор нахиляють у горизонтальне положення, а потім припиняють дуття. Після цього перевіряють склад одержаної сталі і виливають її в ківш.

Існує два види конверторного процесу: кислий - бесемерівський, основний - томасівський та кисневоконверторний.

Бесемерівський процес одержання сталі, що його відкрив англійський винахідник Г.Бессемер у 1855 р., здійснюється в конверторах, внутрішня кладка яких зроблена з кислої вогнетривкої цегли динасу. Суть цього процесу полягає в тому, що кисень повітря, яке вдувається через рідкий чавун, окислює його домішки і при реакціях з інтенсивним перебігом утворюється така кількість тепла, якої цілком досить для перетворення чавуну на сталь протягом 10-13 хв. Вихідним матеріалом для ведення процесу є переробний чавун. Процес у бесемерівському конверторі поділяють на три періоди.

Рис. 1. Конвертор

Мал. 2. Положення конвертора

Перший період - окислення основної маси рідкого заліза, а також кремнію, марганцю та вуглецю киснем повітря, яке вдувається. Активне окислення відбувається за рахунок кисню закису заліза FеО, який утворюється у великій кількості при горінні заліза. Цей період окислення домішок з вигорянням кремнію і марганцю супроводжується бурхливим виділенням іскор (період іскор). Полум'я при цьому малиново-червоне. Триває перший період 2-3 хв.; одночасно починається шлакоутворення.

Другий період характеризується активним окисленням вуглецю за реакцією:

FеО + С = СО - Q

Вуглець вигоряє з великим вбиранням тепла, тому температура в конверторі трохи знижується. Утворений окис вуглецю СО згоряє в СО2. Полум'я при цьому сліпучо-біле. Вигоряння вуглецю триває 7-8 хв. У більшості випадків цим періодом закінчується плавлення, коли вміст вуглецю в одержаній сталі має дорівнювати 0,4-0,5%.

Третій період. Коли треба виплавити сталь з дуже малим вмістом вуглецю, то процес вигоряння вуглецю продовжують. Факел полум'я зменшується, з'являється бурий дим - ознака горіння заліза з утворенням FеО; це триває 1-2 хв., і процес продування закінчується.

Конвертор нахиляють у горизонтальне положення, подавання повітря припиняють. Проте сталь ще не можна вважати готовою, бо в ній розчинена велика кількість FеО (оксиду заліза).

Кисень сталі є шкідливою домішкою, бо надає їй крихкості в гарячому стані - червоноламкості. Тому, щоб видалити кисень, сталь розкислюють феросиліцієм, феромарганцем або алюмінієм.

Конвертори бувають місткістю від 10 до 60 т. Продуктивність їх дуже велика (12000-13000 т на добу).

Недоліки:

1) бесемерівська сталь погано піддається електрозварюванню (в навколошовній зоні з'являються тріщини);

2) ця сталь має підвищену крихкість (особливо при мінусовій температурі);

3) бесемерівська сталь піддається старінню в результаті виділення нітридів заліза (підвищується міцність і знижуються пластичні властивості). Ці різні властивості обумовлені головним чином підвищеним вмістом в цій сталі фосфору (до 0,06-0,07%), і особливо азоту (до 0,015-0,025%).

Томасівський процес одержання сталі, що його відкрив у 1878 р. англійський металург С.Томас, дає можливість переплавляти чавуни з високим вмістом фосфору (до 1,5-2,5%) і низьким вмістом кремнію (від 0,2 до 0,9%). На відміну від бесемерівського, томасівський конвертор викладено не кислим, а основним вогнетривом - доломітом. Томасівський конвертор розмірами трохи перевищує бесемерівський (розраховані вони на однакову кількість чавуну, що його заливають), бо в ньому утворюється багато шлаку. Фосфор у томасівському процесі відіграє вирішальну роль (аналогічну тій, яку відіграє кремній у бесемерівському), бо він при вигорянні виділяє велику кількість тепла, потрібну для підвищення температури в конверторі. Перед заливанням чавуну в конвертор вводять вапняк (12-20% від ваги чавуну); після заливання чавуну роблять продування.

Томасівський процес також поділяють на три періоди.

Перший період - окислення кремнію, марганцю, заліза. Реакції проходять так само, як у бесемерівському процесі, але через те, що кремнію в томасівському процесі небагато, цей період закінчується раніше.

Другий період характеризує окислення вуглецю за реакцією

FеО + С = Fе + СО - Q

Третій період - вигоряння фосфору (частково за рахунок вільного кисню, але головним чином за рахунок кисню FеО.

У томасівському конверторі виплавляють здебільшого низьковуглецеву сталь, бо вигоряння фосфору починається тільки після повного вигоряння вуглецю. В деяких випадках, коли це посталь наприкінці плавлення навуглецьовують. Розкислюють так само, як у бесемерівському процесі, тільки спершу зливають шлак.

Позитивні властивості конверторної плавки - висока продуктивність, нескладне обладнання конвертора, відсутність потреби в паливі. Конверторна сталь - сталь звичайної якості. Вартість її невисока.

До недоліків способу слід віднести неможливість переплавлення металевих відходів; використання чавуну тільки певного хімічного складу; великий вигар металу, трудність одержання сталі заданого складу; велику кількість розчинених газів, що зменшують густину сталі.

Томасівським способом сталь в Україні не виплавляється.

Мартенівський спосіб. Цей спосіб може бути кислим або основним. На металургійних заводах країни мартенівська сталь виробляється основним скрап-рудним процесом, металева шихта якого складається з 55-65% рідкого чавуну і 45-35% залізостального лому. Кислим мартенівським способом сталь виплавляють лише на деяких машинобудівних заводах. Мартенівський процес не може відбуватися без використання зовнішніх джерел тепла. Для опалення мартенівських печей використовується газоподібне чи рідке паливо - природний, коксовий і генераторний гази та мазут.

Одноканальна мартенівська піч (мал. 3) складається з верхньої будівлі (частина мартенівської печі, що знаходиться над робочим майданчиком) та нижньої будівлі (частина мартенівської печі, що знаходиться під робочим майданчиком). До верхньої будівлі належить плавильний або робочий простір печі 1, який обмежений подом, відкосами, передньою та задньою стінками та склепінням; в торцях плавильного простору знаходяться головки печі 2, що служать для підведення палива і повітря та відводу продуктів згоряння; головки печі з'єднані за допомогою вертикальних каналів 3 з нижньою будівлею печі.

Мал. 3. Схема мартенівської печі

До нижньої будівлі печі належать: частина вертикальних каналів під робочою площею; шлаковики 4, що служать для уловлювання часток пилу і шлаку з продуктів згоряння; регенератори 5 з регенеративними решітками, що служать для акумуляції тепла, яке виноситься продуктами згоряння, і для нагріву повітря (або повітря та газу); лежак 6, що служить для відводу продуктів згоряння і для відводу повітря (або повітря та газу); реверсивні і регулюючі клапани та заслони (шибери) 7, що служать для здійснення реверсування факела полум'я.

За мартенівськими печами знаходяться: котли-утилізатори 8, що служать для утилізації тепла відхідних продуктів згоряння; газоочисники 9 для очищення продуктів згоряння від пилу; димарі 10 для створення разом з димососами необхідного розрідження для евакуації продуктів згоряння з печі, розсіювання шкідливих викидів. Мартенівські печі симетричні за своєю конструкцією. Якщо ліва частина служить для відводу продуктів згоряння, то права частина - для підведення газу і повітря. При реверсуванні факела призначення лівої та правої частин печі змінюється навпаки. Реверсування факела проводять через 5-20 хв., залежно від періоду плавки і температури нагріву насадки регенераторів.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать