Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4
p align="left">гд= 3,4* 0,410= 1,4

= s (гbдb / г sдs) = s (2/1,4)

Расчет з для глюкозы:

С6Н12О6 СН2О

г= 4+2-2= 4

М(глюкоза) =180

М(углерода) = 72

180 - 100%

72 - д

д= 0,4

гд= 4* 0,4= 1,6

з = Хs (2/1,6)

2.3.2. Вычисление удельной скорости роста штамма LPM-4

Удельная скорость роста :

= (ln x2/x1)/(t2-t1) ,

где х2 - концентрация биомассы в конечный момент времени, мг/л;

x1 - концентрация биомассы в начальный момент времени, мг/л;

(t2-t1) - промежуток времени, в течение которого возросла биомасса, ч.

Глава 3. Результаты и их обсуждение

Известно, что бактериальный штамм LPM-4 характеризуется уникальной потребностью в ЭДТА для роста клеток и не растет на средах в отсутствие ЭДТА. Совместную ассимиляцию ЭДТА и глюкозы штаммом LPM-4 можно рассматривать как процесс кометаболизма, при котором ЭДТА является ростовым субстратом, а глюкоза косубстратом, ее метаболизм зависит от присутствия ЭДТА.

Опыт проводили в два этапа:

1) Исследование влияния степени деградации ЭДТА на ассимиляцию глюкозы бактериальным штаммом LPM-4;

2) Исследование способности штамма LPM-4 к ассимиляции ЭДТА и глюкозы в процессе длительного культивирования с добавлением субстрата.

3.1. Исследование влияния степени деградации ЭДТА на ассимиляцию глюкозы бактериальным штаммом LPM-4

Бактерии выращивали на ЭДТА-содержащей среде с добавлением глюкозы в различные периоды культивирования: до посева или на 1, 2, 3, 4, 5, и 6 сутки роста клеток (рис. 6).

3.1.1 Динамика роста и потребления глюкозы и ЭДТА бактериальным штаммом LPM-4

Данные об изменении плотности биомассы, рН, концентрации ЭДТА и аммония в различных вариантах сред представлены в таблицах 1-8.

Во всех вариантах опыта деградация ЭДТА отмечалась уже на 1 сутки роста и заканчивалась на 3 сутки, независимо от присутствия глюкозы в среде. Таким образом, можно сделать заключение, что присутствие косубстрата (глюкозы) не оказывало влияния на деградацию ростового субстрата (ЭДТА).

При внесении глюкозы в среду до посева бактерий (вариант 2) потребление глюкозы началось только на 3 сутки роста, после полной деградации ЭДТА, и закончилось на 8 сутки роста (приложение 2, рис. 3.1.1.1). Можно предположить, что энергия, образующаяся в процессе деградации ЭДТА, используется клетками для индукции ферментов метаболизма глюкозы или для ее транспорта. Потребление глюкозы сопровождалось увеличением плотности биомассы в два раза по сравнению с контролем.

При внесении глюкозы в среду на 1 сутки роста бактерий (вариант 3) динамика ее ассимиляции была такой же, как в варианте 2. Потребление глюкозы началось после исчерпания ЭДТА из среды (3 сутки), закончилось на 8 сутки культивирования и привело к двукратному увеличению плотности биомассы (приложение 3, рис. 3.1.1.2).

Иная картина ассимиляции глюкозы наблюдалась при ее внесении в среду на 2 сутки роста бактерий, когда остаточная концентрация ЭДТА снизилась в 1,7 раза (вариант 4). Потребление глюкозы началось только на 4 сутки, затем наблюдалась длительная лаг фаза, когда концентрация глюкозы в среде не изменялась; интенсивная ассимиляция глюкозы происходила с 6 до 10 суток культивирования (приложение 4, рис. 3.1.1.3).

При внесении глюкозы в среду на 3 сутки роста клеток, когда деградация ЭДТА закончилась (вариант 5), глюкоза не потреблялась в течение 6 суток и только с 9 суток началась ее интенсивная ассимиляция (приложение 5, рис. 3.1.1.4). Таким образом, при внесении косубстрата в период, когда закончен метаболизм ростового субстрата, индукция ассимиляции косубстрата требует длительной лаг фазы, вероятно, из-за недостатка энергии.

При внесении глюкозы в среду на 46 сутки культивирования (варианты 6, 7 и 8), т.е. через 1, 2 и 3 суток после полного потребления ЭДТА, не обнаружено ее ассимиляции (приложение 6-8, рис. 3.1.1.53.1.1.7).

3.1.2. Динамика накопления биомассы и удельная скорость роста штамма LPM-4

На рис. 3.1.2.1. представлена динамика накопления биомассы и удельная скорость роста штамма LPM-4 при культивировании на среде с ЭДТА. Как видно из рисунка, максимальная удельная скорость достигается на 2 сутки и составляет 0,042 ч-1.

В случае, когда добавляли глюкозу в среду до посева (рис. 3.1.2.2), максимальная удельная скорость была выше, чем в контроле, и составляла 0,057 ч-1 (2 сутки). При добавлении глюкозы в среду на 1 и 3 сутки роста бактерий (рис. 3.1.2.3.- 3.1.2.5.) наблюдалось два (а при добавлении глюкозы на 2 сутки - три) пика удельных скоростей. Первый пик характеризует рост за счет потребления ЭДТА. В варианте 3 (рис. 3.1.2.3.) он составляет 0,055ч-1 (2 сутки), в варианте 4 (рис. 3.1.2.4.) -0,049 ч-1, а в варианте 5 (рис. 3.1.2.5.) - 0,042 ч -1. Второй пик удельной скорости роста - за счет потребления глюкозы - был значительно ниже, чем за счет потребления ЭДТА. Максимальная удельная скорость роста за счет потребления глюкозы в третьем варианте составила 0,007 ч-1, в четвертом -0,006ч-1 и 0,016 ч-1, а в пятом -0,022 ч-1. Таким образом, добавление в среду глюкозы на 13 сутки приводит к повторному увеличению скорости роста бактерий, но в значительно меньшей степени, чем при начальной ассимиляции ЭДТА.

Наибольшее значение удельной скорости роста характерно для варианта, когда глюкоза добавлялась в среду до посева бактерий. Следовательно, время добавления косубстрата в среду значительно влияет на скорость роста бактерий.

3.1.3. Накопление аммония в процессе роста штамма LPM-4

Анализируя рис. 3.1.3., можно сделать вывод, что концентрация аммония в среде увеличивается по мере деградации ЭДТА, поскольку ионы аммония - продукты деградации ЭДТА. Во всех вариантах концентрация аммония достигает максимального значения и остается на постоянном уровне в течение нескольких дней. Снижение концентрации аммония при длительном культивировании бактерий объясняется, по-видимому, тем, что клетки потребляют его .

При добавлении глюкозы снижение концентрации ионов аммония начинается раньше, чем в контроле. Интересен тот факт, что накопление аммония в процессе роста штамма LPM-4 на средах с добавлением глюкозы до посева и на 1 сутки роста бактерий происходит сходным образом, причем концентрация аммония в опытах значительно меньше таковой в контроле. Концентрация аммония в опыте на среде с добавлением глюкозы на 2 и 3 сутки роста также ниже контроля. Вероятно, это связано с тем, что аммоний используется для роста клеток в присутствии глюкозы.

3.1.4. Показатели роста штамма LPM-4 при кометаболизме ЭДТА и глюкозы

В таблице 3.1.4. представлены сравнительные результаты показателей роста штамма LPM-4 на различных вариантах сред. На средах с глюкозой суммарная биомасса включает биомассу, образованную как за счет потребления ЭДТА, так и за счет потребления глюкозы. Поскольку концентрация ЭДТА во всех вариантах сред была одинаковой (0,873 г/л), можно предположить, что количество биомассы, образованной из ЭДТА на средах с глюкозой, было таким же, как в контроле (0,196 г/л). Следовательно, если вычесть из суммарной биомассы количество биомассы, образованной из ЭДТА, мы получим количество биомассы, образованной из глюкозы.

Из таблицы видно, что наибольший выход клеток по массе из глюкозы достигается на среде с добавлением глюкозы на 3 сутки роста бактерий. Поскольку ЭДТА и глюкоза характеризуются различным энергосодержанием, правильнее сравнивать выход из этих субстратов не по массе, а по энергии. С этой целью рассчитывали энергетический выход клеток. Наибольший выход биомассы по энергии из глюкозы характерен для опыта на среде с добавлением глюкозы на 3 сутки роста бактерий.

Таким образом показано, что бактериальный штамм LPM-4, облигатный деструктор ЭДТА, не может использовать глюкозу в качестве единственного источника углерода и энергии, но способен метаболизировать ее в присутствии ЭДТА. Установлено, что ЭДТА индуцирует ассимиляцию глюкозы и является источником азота для роста клеток на глюкозе. Индукция ассимиляции неростового субстрата у штамма LPM-4 требует продолжительной лаг-фазы и сопряжена с деградацией ЭДТА. Явление совместного метаболизма ЭДТА и глюкозы можно назвать кометаболизмом.

Кометаболизм - трансформация неростового субстрата в присутствии ростового субстрата или иного метаболизируемого соединения. В данном

Таблица 3.1.4.

Показатели роста штамма LPM-4 при ассимиляции ЭДТА и глюкозы

Показатели

ЭДТА

ЭДТА + глюкоза

(до посева)

ЭДТА + глюкоза

(1 сут)

ЭДТА + глюкоза

(2 сут)

ЭДТА + глюкоза

(3 сут)

Максимальная удельная скорость роста, ч-1

0,042

0,057

0,055

0,049

0,042

ЭДТА, г/л

0,873

0,873

0,873

0,873

0,873

Глюкоза, г/л

0,910

0,977

1,020

1,060

Биомасса суммарная

0,196

0,378

0,391

0,399

0,423

Биомасса, образованная из ЭДТА

0,196

0,196

0,196

0,196

0,196

Биомасса, образованная из глюкозы

0,182

0,195

0,203

0,227

Выход клеток по массе из ЭДТА, YЭДТА, %

22,4

22,4

22,4

22,4

22,4

Выход клеток по массе из глюкозы,Yглюкоза, %

20,0

20,0

19,9

21,4

Выход клеток по энергии из ЭДТА, ЭДТА, %

32,0

32,0

32,0

32,0

32,0

Выход клеток по энергии из глюкозы, глюкоза, %

25,0

25,0

24,9

26,8

случае ростовым субстратом является ЭДТА, а неростовым - глюкоза. Из четырех известных типов кометаболизма штамм LPM-4 способен к третьему типу кометаболизма, когда процессы ассимиляции неростовых субстратов сопряжены с использованием ростовых субстратов, в результате чего соединения углерода включаются в компоненты клетки.

Не обнаружено ассимиляции глюкозы при ее внесении в среду через 13 сут после потребления ЭДТА.

3.2 Исследование способности штамма LPM-4 к ассимиляции ЭДТА и глюкозы в процессе длительного культивирования с добавлением субстрата

В предыдущем разделе было показано, что ассимиляция глюкозы бактериальным штаммом LPM-4 индуцируется в процессе деградации ЭДТА, а кометаболизм ЭДТА и глюкозы у штамма LPM-4 не оказывает влияния на деградацию ЭДТА.

В данном разделе целью работы было исследование:

1) сохраняется ли способность клеток к деградации ЭДТА при дополнительном внесении ЭДТА в среду;

2) сохраняется ли ЭДТА-индуцированная способность клеток ассимилировать глюкозу в процессе длительного культивирования с добавлением глюкозы;

3) сохраняется ли способность штамма LPM-4 к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА в процессе длительного культивирования в присутствии глюкозы.

Схема эксперимента представлена на рисунке 2.1.2.

В первой серии опытов бактерии выращивали на среде с ЭДТА (вариант 1); затем дополнительно вносили ЭДТА на 4 сутки (вариант 2) и на 6 сутки (вариант 3) роста бактерий.

Во второй серии опытов бактерии выращивали на среде, содержащей ЭДТА и глюкозу (вариант 4) и дополнительно вносили глюкозу на 9 сут (вариант 6), 13 сут (вариант 8) и 21 сут (вариант 10).

В третьей серии опытов бактерии выращивали на среде с ЭДТА с подпиткой глюкозой; после потребления глюкозы вносили ЭДТА на 9 сут (вариант 5), 13 сут (вариант 7) и на 21 сут (вариант 9).

3.2.1. Исследование ассимиляции ЭДТА штамма LPM-4 в процессе культивирования с добавлением ЭДТА

Описание: Культуру выращивали на среде с ЭДТА (вариант 1 - контроль). Ассимиляция ЭДТА происходила достаточно быстро и закончилась на четвертые сутки роста (рис. 3.2.1.1, приложение 9), при этом наблюдался рост биомассы до 0,190 г/л. На четвертые сутки роста культуры добавили ЭДТА (вариант 2). При этом культура потребила ЭДТА очень быстро, на следующие сутки присутствовали лишь следы этого соединения, а прирост биомассы составил 0,244 г/л. На шестые сутки роста культуры, то есть через сутки после потребления ЭДТА, еще раз добавили ЭДТА (вариант 3). В данном случае потребление ЭДТА проходило медленно, и ассимиляция его закончилась только на 12 сутки роста; биомасса начала расти только на 10 сутки и достигла максимального значения 0,661 г/л на 12 сутки. После потребления ЭДТА наступила стационарная фаза и дальнейшего роста клеток уже не происходило. Прирост биомассы в варианте 3 составил 0,287 г/л, что гораздо выше, чем в предыдущих вариантах.

Задержка потребления ЭДТА и роста бактерий в варианте 3 возможно объясняется тем, что в течение 1-суточного голодания по ЭДТА произошло снижение активности фермента, ответственного за деградацию ЭДТА.

Согласно литературным данным, фермент первичной деградации ЭДТА (ЭДТА-монооксигеназа) является индуцебельным и его активность резко снижается в отсутствие ЭДТА [30].

Значения выхода клеток по массе и по энергии из ЭДТА были максимальны в контроле и составили 20,2% и 28,9% соответственно, а минимальны в варианте 3 и составили 17,1% и 24,4% соответственно (табл. 3.2.1.1). В вариантах 1 и 2 данные показатели мало отличались друг от друга.

Таблица 3.2.1.1

Показатели роста штамма
LPM-4 при многократном внесении ЭДТА в среду

Показатели

Время внесения добавок ЭДТА

До посева

(вариант 1)

4 сутки

(вариант 2)

6 сутки

(вариант 3)

ЭДТА потребленный, г/л

0,94

1,26

1,68

Биомасса потребленная, г/л

0,190

0,444

0,662

Биомасса в день добавки, г/л

-

0,200

0,374

Биомасса, образованная из внесенного ЭДТА, г/л

0,190

0,244

0,288

Выход клеток по массе из ЭДТА,ЭДТА%

20,2

19,4

17,1

Выход клеток по энергии из ЭДТА, ЭДТА%

28,9

27,7

24,4

Из полученных данных можно сделать следующее заключение. Во-первых, культура сохраняет способность ассимилировать ЭДТА при дополнительном внесении ЭДТА в среду. Во-вторых, повторное добавление ЭДТА в среду приводит к увеличению биомассы, то есть запаса питательных компонентов среды достаточно для поддержания роста клеток. В-третьих, голоданием культуры по ЭДТА в течение одних суток привело к снижению активности фермента, ответственного за деградацию ЭДТА. И в четвертых, снижение показателей выхода клеток по массе и по энергии из ЭДТА в вариантах 2 и 3 очевидно связано с постепенным истощением питательной среды.

3.2.2. Исследование ЭДТА-индуцированной ассимиляции глюкозы штаммом LPM-4 в процессе длительного культивирования с добавлением глюкозы

Описание: культуру выращивали на среде, содержащей ЭДТА и глюкозу (вариант 4 - контроль). Потребление глюкозы в контроле началось только после потребления ЭДТА, т.е. на четвертые сутки, и закончилось на девятые сутки (рис. 3.2.2.1, приложение 10). При этом наблюдалось увеличение биомассы от 0,075 г/л до 0,507 г/л. Затем после потребления глюкозы в среду дополнительно внесли глюкозу (вариант 6). Ее ассимиляция началась сразу же и закончилась уже на 13 сутки роста культуры, при этом биомасса продолжала интенсивно расти, и прирост биомассы составил 0,295 г/л. На 13 сутки после потребления глюкозы еще добавили глюкозу (вариант 8).

На этот раз ее ассимиляция началась сразу же, как и в предыдущем варианте, но продолжалась дольше и практически закончилась на 22 сутки роста культуры.

Таблица 3.2.2.1.

Показатели роста штамма LPM-4 при многократном внесении глюкозы в среду

Показатели

Время внесения добавок глюкозы

До посева

(вариант 4)

9 сутки

(вариант 6)

13 сутки

(вариант 8)

21 сутки

(вариант 10)

Глюкоза потребленная, г/л

1,38

1,69

1,64

1,35

Биомасса максимальная, г/л

0,507

0,721

0,839

0,868

Биомасса, образованная из ЭДТА г/л

0,28

0,426

0,682

0,818

Выход клеток по массе из глюкозы, Глюкоза%

16,5

17,5

9,6

3,7

Выход клеток по энергии из глюкозы, Глюкоза%

20,6%

21,9

12.0

4,6

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать