Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4
рирост биомассы наблюдался, но незначительный и составил 0,157 г/л. При завершении ассимиляции глюкозы на 21 сутки роста мы еще добавили глюкозу. Ее потребление происходило очень медленно, а прироста биомассы не происходило. Максимальное значение биомассы, которое культура достигла за 30 суток культивирования, составило 0,851 г/л.

Выход клеток по массе и по энергии из глюкозы были максимальны в четвертом и шестом варианте и составили 16,5% и 20,6%; 17,5% и 21,9% соответственно, а минимальны в 10 варианте и составили 3,7% и 4,6% соответственно (табл. 3.2.2.1).

Таким образом, мы убедились еще раз, что ассимиляция глюкозы начинается только после полного потребления ЭДТА и приводит к увеличению биомассы. Кроме того, штамм LPM-4 сохраняет способность ассимилировать глюкозу при многократном ее введении. Несколько сниженная ассимиляция глюкозы в варианте 8 и очень медленная ее ассимиляция в варианте 10, по сравнению с контролем (вариант 4), а также незначительный прирост биомассы в этих вариантах объясняется тем, что в среде ужу отсутствуют питательные компоненты: азот, макроэлементы (такие, как фосфор, калий, сера), микроэлементы и витамины, необходимые для роста клеток. Низкие показатели выхода клеток по энергии в 8 и 10 вариантах говорят о том, что хоть глюкоза и потребляется, но синтеза биомассы не происходит.

3.2.3. Исследование способности штамма LPM-4 к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА

Описание: культуру выращивали на среде, содержащей ЭДТА и глюкозу (вариант 4 - контроль), а после исчерпания глюкозы на девятые сутки роста добавляли ЭДТА (вариант 5). ЭДТА очень быстро потребился и уже на 11 сутки роста культуры ЭДТА в среде не был обнаружен (рис. 3.2.3.1, приложение 11). Биомасса значительно увеличилась и прирост ее на этот период составил 0,325 г/л, после чего наступила стационарная фаза.

Выход клеток по массе и по энергии из ЭДТА в контроле составили 22,8% и 32,6% соответственно, а в опыте 16,9% и 24,1% соответственно (табл. 3.2.3.1).

На 13 сутки к культуре, выращенной на глюкозе, добавили ЭДТА (вариант 7). Потребление ЭДТА происходило быстро и закончилось на 15 сутки роста (рис. 3.2.3.2, приложение 12). Прирост биомассы был небольшим, и составил за этот период 0.146 г/л.

Выход клеток по массе из ЭДТА в варианте 7 составил 9,2%, а по энергии 13,1% (табл.3.2.3.2).

При добавлении ЭДТА к 13-суточной культуре, выращенной в присутствии глюкозы (вариант 9), потребление ЭДТА произошло быстро и закончилось на следующие сутки (рис. 3.2.3.3 и приложение 13), однако прирост биомассы был незначителен. Выход клеток по массе из ЭДТА составил 6,6%, а выход клеток по энергии - 9,4% (табл. 3.2.3.3).

В итоге можно сделать следующее заключение. Во-первых, культура сохраняет способность к ассимиляции ЭДТА, добавленного на разные сутки роста штамма LPM-4 в присутствии глюкозы. Следовательно, клетки сохраняют способность к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА даже после длительного потребления глюкозы.

Во-вторых, значения выхода клеток по массе и по энергии из ЭДТА с увеличением времени роста культуры уменьшаются, что, по-видимому, связано с истощением питательных компонентов среды. В-третьих, выход клеток по массе и энергии из ЭДТА и выход клеток по массе и энергии из глюкозы мало отличаются друг от друга.

Таблица 3.2.3.1.

Показатели роста штамма LPM-4 при добавлении ЭДТА или глюкозы к 9 суточной культуре, выращенной в присутствии глюкозы

Показатели

Добавки

Контроль

(вариант 4)

ЭДТА

(вариант 5)

Глюкоза

(вариант 6)

ЭДТА потребленный, г/л

1,23

1,92

-

Глюкоза потребленная, г/л

1,38

-

1,69

Биомасса максимальная, г/л

0,507

0,759

0,721

Биомасса, образованная

из ЭДТА г/л

0,28

0,434

0,426

Биомасса, образованная

из глюкозы, г/л

0,227

0,325

0,295

Выход клеток по массе из ЭДТА,ЭДТА%

22,8

16,9

-

Выход клеток по массе из глюкозы, Глюкоза%

16,5

-

17,5

Выход клеток по энергии из ЭДТА, ЭДТА%

32,6

24,1

-

Выход клеток по энергии из глюкозы, Глюкоза%

20,6

-

21,9

Таблица 3.2.3.2.

Показатели роста штамма LPM-4 при добавлении ЭДТА или глюкозы к 13-суточной культуре, выращенной в присутствии глюкозы

Показатели

Добавки

Контроль

(вариант 6)

ЭДТА

(вариант 7)

Глюкоза

(варианты 8)

ЭДТА потребленный, г/л

-

1,58

-

Глюкоза потребленная, г/л

1,69

-

1,64

Биомасса максимальная, г/л

0,721

0,845

0,839

Биомасса в день добавки, г/л

0,426

0,699

0,682

Биомасса, образованная из внесенного субстрата, г/л

0,295

0,146

0,157

Выход клеток по массе из ЭДТА,ЭДТА%

-

9,2

-

Выход клеток по массе из глюкозы, Глюкоза%

17,5

-

9,6

Выход клеток по энергии из ЭДТА, ЭДТА%

-

13,1

-

Выход клеток по энергии из глюкозы, Глюкоза%

21,9

-

12.0

Таблица 3.2.3.3.

Показатели роста штамма LPM-4 при добавлении ЭДТА или глюкозы к 21-суточной культуре, выращенной в присутствии глюкозы

Показатели

Добавки

Контроль

(вариант 8)

ЭДТА

(вариант 9)

Глюкоза

(вариант 10)

ЭДТА потребленный, г/л

-

1,57

-

Глюкоза потребленный, г/л

1,64

-

0,87

Биомасса максимальная, г/л

0,839

0,880

0,851

Биомасса в день добавки, г/л

0,682

0,777

0,818

Биомасса, образованная из внесенного субстрата, г/л

0,157

0,103

0,033

Выход клеток по массе из ЭДТА,ЭДТА%

-

6,6

-

Выход клеток по массе из глюкозы, Глюкоза%

9,6

-

3,8

Выход клеток по энергии из ЭДТА, ЭДТА%

-

9,4

-

Выход клеток по энергии из глюкозы, Глюкоза%

12.0

-

4,8

Таким образом, полученные результаты показывают, что штамм LPM-4 сохраняет способность к деградации ЭДТА при дополнительном внесении ЭДТА в среду, что приводит к увеличению биомассы. Также доказано, что ЭДТА-индуцированная способность штамма LPM-4 к ассимиляции неростового субстрата глюкозы является стабильной и сохраняется в течение длительного культивирования с подпиткой глюкозой. Снижение прироста биомассы с увеличением времени культивирования объясняется, по-видимому, истощением питательной среды. Показано, что неростовой субстрат, то есть глюкоза, в процессе длительного культивирования становится ростовым субстратом. Установлена способность бактерий к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА в процессе длительного культивирования.

Заключение

В результате проведенных исследований установлено, что присутствие косубстрата (глюкозы) не оказывает влияния на деградацию ростового субстрата (ЭДТА) штаммом LPM-4.

При внесении глюкозы в среду до посева ее потребление началось после завершения деградации ЭДТА и сопровождалось увеличением плотности биомассы в два раза по сравнению с контролем. При внесении косубстрата в момент исчерпания ростового субстрата, индукция ассимиляции косубстрата требует длительной лаг фазы, вероятно, из-за недостатка энергии. Не обнаружено ассимиляции глюкозы при ее внесении в среду через 1-3 суток после потребления ЭДТА.

Величины выхода клеток по массе из ЭДТА и глюкозы (при внесении глюкозы до посева или на 1-3 сутки) мало различались и составили 22,4% и 19,9-21,4% соответственно. Однако, поскольку ЭДТА и глюкоза характеризуются различным энергосодержанием, более правильно сравнивать энергетический выход клеток из этих субстратов. Энергетический выход характеризует долю энергии субстрата, перешедшую в биомассу. Поскольку энергосодержание глюкозы выше, чем ЭДТА (значения составляют 1,6 и 1,4 соответственно), выход биомассы по энергии из ЭДТА был выше, чем из глюкозы и составлял 32%, тогда как выход клеток по энергии из глюкозы изменялся в пределах от 24,9 до 26,8 %.

Анализируя результаты второго этапа опытов, мы убедились, что культура сохраняет способность ассимилировать ЭДТА при дополнительном внесении ЭДТА в среду. Повторное добавление ЭДТА в среду приводит к увеличению биомассы, то есть запаса питательных компонентов среды достаточно для поддержания роста клеток.

Показано, что штамм LPM-4 сохраняет ЭДТА-индуцированную способность ассимилировать глюкозу при многократном ее введении. Несколько сниженная ассимиляция глюкозы по сравнению с контролем и незначительный прирост биомассы при длительном культивировании бактерий (в течение 1321 суток) объясняется тем, что в среде уже отсутствуют компоненты питательной среды, необходимые для роста культуры. Низкие показатели выхода клеток по массе и энергии при длительном культивировании говорят о том, что хоть глюкоза и потребляется, но синтеза биомассы не происходит.

Показано, что клетки штамма LPM-4 сохраняют способность к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА в процессе длительного культивирования.

Результаты данного исследования важны для дальнейшей разработки нового биопрепарата по очистке сточных вод, который будет включать ЭДТА-разрушающий штамм LPM-4. Полученные данные помогут в выборе условий, оптимальных для деятельности штамма. Но нужно провести еще много работы, чтобы получить этот биопрепарат.

Выводы

1. Установлено, что кометаболизм ЭДТА и глюкозы у штамма LPM-4 не оказывает влияния на деградацию ЭДТА.

2. Показано, что ассимиляция глюкозы бактериальным штаммом

3. LPM-4 индуцируется только в процессе интенсивной деградации ЭДТА.

4. Обнаружено, что штамм LPM-4 сохраняет способность к деградации ЭДТА при дополнительном внесении ЭДТА в среду.

5. Доказано, что бактерии сохраняют способность к ЭДТА-индуцированной ассимиляции глюкозы в процессе длительного культивирования с многократным добавлением глюкозы.

6. Установлено, что штамм LPM-4 способен к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА в процессе длительного культивирования в присутствии глюкозы.

Литература

1. Биологическая очистка сточных вод. http://www.rfbr.ru

2. Босоло Ф. Химия координационных соединений.- М.: Мир, 1966.-145с.

3. Kari F.G. Modeling the photochemical degradation of ethylenediaminetetraacetate in the river Glatt/ F.G. Kari, W. Giger// Environ.Ski Technol.- 1995.-V.29.-P.2814-2827.

4. Bucheli-Witschel M., T. Egli Environmental fate and microbial degradation of aminopolycarboxylic acids // FEMS Microbiol. Rev. - 2001. - V.25. - P.69 - 106

5. Gschwind N. Biologischer Abbau von EDTA in einem Modelwasser // Wasser Abwasser. - 1992. - V.133. - P.546 - 549.

6. Chistyakova T.I., Dedyukhina E.G., Satroutdinov A.D., Kaparullina E.N.,

Gavrish E.Yu., Eroshin V.K. EDTA- dependent bacterial strain.//Process Biochem. 2005. V. 40. N 2. P. 601-605.

7. Бек М. Химия равновесий реакций комплексообразования. - М.: Мир, 1973. 145с.

8. Арчаков А.И. Оксигеназы биологических мембран. - М.: Наука, 1983. - 120 с.

9. Ляхович В.В. Структурные аспекты биохимии монооксигеназ. - Новосибирск.: Наука, 1978. - 47 с.

10. Witschel M., Nagel S., Egli T. Identification and characterization of the two-enzyme system catalyzing the oxidation of EDTA in the EDTA-degrading bacterial strain DSM-9103 // J.Bacteriol. - 1997. - V.179. - P.6937 - 6943.

11. Lauff J.J., Steele D.B., Coogan L.A., Breitfeller J.M. Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. // Appl. Environ. Microbiol. 1990. V.56. P. 3346-3353.

12. Nцtermann B. Total degradation of EDTA by mixed cultures and a bacterial isolate // Appl. Environ. Microbiol. 1992. V.58. P. 671-676.

13. Chistyakova T.I., E.N. Kaparullina, E.Yu. Garvish, V.K. Eroshin. A novel-EDTA-degrading Pseudomonas sp. // World Journal of Microbiology and Biotechnology 2003 P.977-980

14. Foster J.W. Hidrocarbons as substrates for microorganisms.// Antonie van Leeuwenhock J. Microbiol. And Serol. 1962

15. Higgins I.J., Best D.J., Hammond R.C. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential// Nature (London). - 1980. - 286

16. Malashenco Yu.R. Syntabolism, the transformation of non-growth substrates up to biomass by obligate methane-oxidizing bacteria // 4th Int. symp. Microbial growth on C1- compounds (Minneapolis, Sept., 1983): Abstrs. - Minneapolis,1983. - Thes. 2-10

17. Малашенко Ю.Р., Соколов И.Г., Романовская В.А. Микробный метаболизм неростовых субстратов.- Киев. Изд-во “ Наукова думка” 1987

18. Современная микробиология. Прокариоты. Под редакцией Ленгелера Й., Древса Г.- М.: Мир 2005.

19. Ваккеров-Коузова Н.Д. Характеристика почвенных бактерий, трансформирующих азобензол.// Прикладная биохимия и микробиология. 2005, №2. М.: Наука.

20. Бабошин М. А. Кометаболизм флуорена культурами Rhodococcus rhodochrous и Pseudomonas fluorescens / Бабошин М. А., Финкельштейн З. И., Головлева Л. А. // Микробиология. - 2003. - Т. 72, N 2. - С. 194-198

21. Дзюбан А. Н., Косолапов Д. Б., Кузнецов И. А. Влияние промышленно-коммунальных стоков г. Череповца на функционирование бактериальных сообществ илов Рыбинского водохранилища // 11 Международный симпозиум по биоиндикаторам "Современные проблемы биоиндикации и биомониторинга" Сыктывкар , 17-21 сент.,2001 - С. 51-52 . Рус.; рез. англ.

22. Matthew F. Verce, Ricky L. Ulrich and David L. Freedman. Transition from Cometabolic to Growth-Linked Biodegradation of Vinil Chloride by a Pseudomonas sp. Isolated on Ethene.// Environ. Sci. Technol. 2001. V.35. P. 4242-4251.

23. Ленинджер А. Биохимия. Молекулярные основы структуры и функционирования клетки. - М: Мир. 1974 -957с.

24.Шлегель Г. Общая микробиология. М: Мир 1987. c. 194-197

25. Перт С.Дж. Основы культивирования микроорганизмов и клеток. - М: Мир. 1978. 331с.

26. bioengineering@yandex.ru, copyright 2003

27. Характеристики культур с подпиткой рекомбинантной Escherichia coli, содержащих аналог человеческого коллагена кДНК при различных удельных скоростях роста. http://www.biogene.ru/articles2.html

28. Гибридные системы биодеструкции с использованием биологически агрессивного химического реагента / Кузнецов А. Е., Сафронов В. В. // Сб. науч. тр. - Рос. хим.-технол. ун-т. , 2001 . № 179 .- С. 227-241.].

29. Минкевич И.Г. Материально-энергетический баланс и кинетика роста микроорганизмов.- Москва-Ижевск: НИЦ “Регулярная и хаотическая динамика”; Институт компьютерных исследований, 2005.-352с.

30. Satroutdinov A., Dedyukhina E., Chistyakova T., Witschel M., Minkevich I., Eroshin V., Egli T. Degradation of Metal-EDTA Complexes by Resting Cells of the Bacterial Strain DSM 9103. Environ. Sci. Technol. 2000, 34, 1715-1720

Приложение 1.

Таблица. Рост культуры на среде с ЭДТА (вариант 1)

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать