Совершенствование полуэмпирических методов рационального использования биологических ресурсов водоемов
з первых двух основных уравнений селективности при отцеживании и объячеивании следует, что если задать два из трех показателей, регламентирующих селективность лова, то третий должен иметь определенное значение. В то же время задание в Правилах регулирования рыболовства всех трех показателей оправдано, т.к. один из них является контрольным. Таким контрольным показателем обычно является прилов рыб непромысловых размеров. Он может превысить допустимый уровень, например, при увеличении доли маломерных рыб в облавливаемых скоплениях, что может служить причиной временного прекращения лова.

Важно, что для заданного значения [nп], получают различные пары значений lнп и [nнп]. Конкретную величину каждого из них принимают с учетом, например, биологического обоснования этих показателей. Если дано биологическое обоснование лишь одного из них, то второй показатель (lнп или [nнп]) определяют с применением основных уравнений селективности.

В регламентирующих лов документах обычно одновременно задают промысловую меру на рыбу lнп и допустимый прилов рыб непромысловых размеров [nнп]. При этом не всегда учитывают общность и отличие их функций как мер регулирования рыболовства. Чтобы решить эту задачу, рассмотрим, к каким последствиям приводит изменение lнп и [nнп] при неизменном размере ячеи и при изменении его с целью обеспечить заданный допустимый прилов рыб непромысловых размеров.

Предположим, плотность распределения размерного состава облавливаемых скоплений g(l), а кривая селективности для размера ячеи А - S (l). По этим данным можно построить кривую распределения размерного состава улова y (l).

Если принять сначала меру на рыбу равной lнп,, а затем lнп,,, причем lнп, < lнп,,, то при том же размере ячеи А это приведет к увеличению прилова маломерных рыб при неизменном общем улове и потере улова рыб промысловых размеров. Если размер ячеи задан, а промысловая мера на рыбу не задана, то можно определить промысловую меру на рыбу, которая соответствует заданным А и lнп.

При постоянном размере ячеи и заданной мере на рыбу изменять допустимый прилов маломерных рыб, очевидно, нет необходимости, т.к. фактический прилов маломерных рыб, при прочих равных условиях, однозначно зависит от lнп и А.

Предположим далее, что с изменением lнп необходимо регулировать размер ячеи, чтобы обеспечить заданное значение [nнп]. В этом случае фактические значения nнп, очевидно, будут неизменными, а улов рыб промысловых размеров изменяется. При этом, если lнп,, > lнп,, то улов уменьшается, а прилов рыб непромысловых размеров состоит из более крупных рыб. Hапротив, если lнп, < lнп", то улов увеличится, а прилов маломерных рыб будет включать более мелких рыб.

Увеличение меры на рыбу приводит к рыбоохранному эффекту, т.к. часть маломерных рыб остается в водоеме.

Hаконец, рассмотрим случай, когда при постоянном значении lнп допустимый прилов маломерных рыб изменяется с [nнп] до [nнп]нп (причем [nнп],, < [nнп], ), и, соответственно, увеличится размер ячеи с А, до А,,. При снижении общего улова в этом случае снижается и улов рыб непромысловых размеров.

Таким образом, при увеличении меры на рыбу и при уменьшении допустимого прилова маломерных рыб в водоеме остается часть маломерных рыб и снизится улов рыб промысловых размеров. Следовательно, влияние промысловой меры на рыбу и допустимого прилова маломерных рыб как мер регулирование рыболовства и как факторов, влияющих на эффективность лова, качественно одинаково, и регулирование одного показателя в некоторых пределах можно заменить регулированием другого показателя.

Количественно оценить взаимосвязь lнп и nнп можно, рассматривая приближенные выражения для относительных величин общего улова yо, улова рыб промысловых размеров yп, прилова маломерных рыб yнп и формулу для оценки внутреннего размера ячеи А (Мельников, 1983 ; 1986).

Анализ этих и полученных из них выражений подтверждает вывод об эквивалентности влияния промысловой меры на рыбу и допустимого прилова рыб непромысловых размеров на состояние запасов промысловых рыб. Эквивалентом при оценки взаимосвязи lнп и nнп можно считать равенство числа рыб непромысловых размеров, которые дополнительно изымаются из водоема или дополнительно остаются в водоеме при изменении lнп и [nнп].

Из указанных выше выражений несложно получить уравнения для количественной оценки регулирования рыболовства изменением промысловой меры на рыбу и допустимого прилова рыб непромысловых размеров, а также для оценки целесообразности регулирования рыболовства величиной lнп или величиной [nнп] с учетом эффективности лова.

Hесмотря на отмеченную эквивалентность, возможности регулирования рыболовства изменением [nнп] значительно меньше, чем с помощью lнп (и притом лишь в определенном диапазоне значений lнп). Однако и в последнем случае они ограничены из-за большего влияния lнп на эффективность лова. Диапазон регулирования селективности лова иногда можно существенно расширить путем одновременного регулирования lнп и [nнп].

Hаглядное представление о влиянии lнп и [nнп] на эффективность лова дают графики nнп = f(А ) и nп = f(А ) для нескольких значений lнп. Характерный вид таких графиков для лова разноглубинными тралами черноморского шпрота приведен на рис. 7.3.

Рассматривая графики, можно оценить относительную степень влияния lнп и [nнп] на эффективность лова, установить, как влияет размер ячеи на прилов рыб непромысловых размеров и уход через ячею рыб промысловых размеров, определить близкие к оптимальным (с учетом производительности лова) значения lнп и [nнп].

Допустимый прилов рыб непромысловых размеров редко превышает 0,08-0,1, уход через ячею сетных мешков более 0,2-0,3 рыб промысловых размеров нежелателен, а отношение среднеквадратичного отклонения длины рыб в облавливаемых скоплениях от среднего к диапазону селективности сетного мешка обычно меньше 0,4-0,5. С учетом установленных ограничений lнп < lср - 1,25-1,5 (lср - средняя длина рыб в облавливаемых скоплениях). В соответствии с последним неравенством доля рыб непромысловых размеров в облавливаемых скоплениях Nнп не должна превышать 0,15-0,20. Лишь когда [nнп ] > 0,3-0,35, величина lнп приближается к lср, а допустимая величина Nнп - к 0,5. Завышение lнп и Nнп против указанных значений приводит к резкому увеличению ухода через ячею рыб промысловых размеров и снижению улова.

Для допустимых значений [nп ] величина [nнп], как правило, должна превышать 0,5Nнп. Лишь при лове скоплений с широким диапазоном размерного состава величина [nнп] может снижаться до 0,3-0,35 Nнп. Занижение [nнп ], как и завышение lнп, приводит к существенному увеличению ухода через ячею рыб промысловых размеров. При этом характерно, что соотношение между допустимым приловом рыб непромысловых размеров и долей рыб непромысловых размеров в облавливаемых скоплениях зависит практически в основом от ширины диапазона размерного состава облавливаемых скоплений, а не от допустимого ухода из сетного мешка рыб промысловых размеров. Об этом наглядно свидетельствуют данные рис. 7.4.

Полученные закономерности свидетельствуют о необходимости ограничения [nнп ] не только сверху с учетом его влияния на состояние запасов, но и снизу в связи с его влиянием на эффективности лова. Минимально допустимое значение [nнп] можно в первом приближении получить из основных уравнений селективности, если задаться допустимым уходом через ячею рыб промысловых размеров [nп]. Результат расчетов во многом зависит не только от [nп], но и от размерного состава облавливаемых скоплений и особенно промысловой меры на рыбу.

2.6. Особенности объединения показателей селективности для различных районов,сезонов и объектов лова

Если все или некоторые одноименнные показатели, регламентирующие селективность рыболовства, близки между собой, то возникает вопрос о возможности использования одного значения показателя для нескольких районов лова, сезонов лова или нескольких видов рыб. Такое объединение значительно облегчает регулирование селективности, разработку регламентирующих лов документов. Для решения задачи можно воспользоваться методами дисперсионного анализа, которые широко используются для решения некоторых задач теории рыболовства.

Будем считать, что распределение размеров ячеи и других показателей, регламентирующих селективность рыболовства,под влиянием случайных колебаний размерного состава, селективных свойств орудий лова и других факторов, подчиняется нормальному закону. Если рассматривать, например,возможность использования одинакового размера ячеи при лове рыб различных видов, то порядок решения задачи следующий.

Предположим, математические ожидания размера ячеи для рыб различных видов равны

_ _ _ _

Аф1, Аф2, Аф3, Афк, а дисперсии S12, S22, S32, Sк2. Тогда среднее математическое ожидание размера ячеи для рыб всех видов

(2.14)

Средняя дисперсия в результате случайного разброса размера ячеи с учетом дисперсий по размеру ячеи для рыб различных видов равна

(2.15)

Дисперсия,связанная с неслучайным фактором как результатом неодинакового размера ячеи для рыб разных видов,

(2.16)

Показатель влияния неслучайного разброса математических ожиданий размера ячеи рассмотрен здесь аналогично показателю влияния случайного фактора. Следовательно, эти два влияния можносравнивать между собой по критерию Фишера.

Влияние неслучайного разброса признается незначимым для доверительной вероятности b, если

s12 /S2 < Fb (2.17)

где Fb - критерий Фишера.

Критерий Фишера определяют по степеням свободы

f1 = k-1 ; f2= k (n - 1) (7.18)

где n- число наблюдений (вариантов расчета), по которым получен каждый из к вариантов расчета.

В нашем случае число одновременно рассматриваемых размеров ячеи (объектов лова) обычно не превышает 3-4, а, следовательно, f1 не бывает больше 2-3, а f2 может колебаться в широких пределах, превышая, как правило, 10-15. Доверительную вероятность в таких расчетах обычно принимают равной 0,9-0,95.

Если в результате расчетов оказалось,что лов двух или нескольких объектов можно производить сетными мешками с одним и тем же размером ячеи, то в регламентирующих лов документах отражают такую возможность и целесообразность.

Аналогичным способом можно оценить возможность объединения промысловой меры на рыбу и допустимого прилова рыб непромысловых размеров для различных объектов лова в пределах некоторых периодов промыслового времени и размеров промыслового участка.

Существенно помогает процедуре объединения показателей, регламентирующих селективность, предварительное деление промыслового времени на периоды осреднения и района лова на осредненные промысловые участки.

2.7. Основные результаты и выводы по главе 7

1. Сложность регулирования селективностью рыболовства обусловлена, прежде всего, многообразием требований, которым должны удовлетворять эти меры, трудностью выбора основных требований и выработки на их основе решений.

2. По ряду объективных и субъективных причин не всегда возможно на практике реализовать меры регулирования селективности рыболовства, например, из-за невозможности во многих случаях получить заданный прилов рыб непромысловых размеров для заданных одновременно промысловой мере на рыбу и размере ячеи.

3. Установлены недостатки существующих методов оценки и регулирования показателей, регламентирующих рыболовство; показано, что при их определении не всегда учтена взаимосвязь показателей и что такие показатели практически не связаны с эффективностью рыболовства.

4. В основу промыслово-биологического обоснования показателей, определяющих селективность лова отцеживающими орудиями, положены основные уравнения селективности сетных мешков, которые увязывают все регламентирующие лов показатели с размерным составом облавливаемых скоплений и селективными свойствами сетных мешков.

5. Предложена методика обоснования показателей, регламентирующих селективность лова, основанная на предварительной оценке показателей для различных условий лова (для различных вариантов расчета) с последующей унификацией полученных данных с учетом полученных законов распределения и численных характеристик искомых показателей и данных биологического обоснования этих показателей.

6. Установлен характер и степень взаимосвязи между размером ячеи, промысловой мерой на рыбу и допустимым приловом рыб непромысловых размеров, и найдены ограничения на каждый из них с учетом их взаимного влияния.

7. Рассмотрена процедура оценки целеосообразности объединения показателей, регламентирующих лов, для различных объектов, сезонов и районов, основанная на применении методов дисперсионного анализа.

8. Показано, что регулирование селективности и обоснование показателей, регламентирующих селективность рыболовства, с использованием основных уравнений селективности наиболее эффективно одновременно с применением других методов их обоснования и, прежде всего, биологического. При общем уменьшении размеров рыб в облавливаемых скоплениях применение других методов становится обязательным.

ГЛАВА 3. СОВЕРШЕНСТВОВАНИЕ ОЦЕНКИ ИНТЕНСИВНОСТИ ПРОМЫСЛА И РЫБОЛОВСТВА

3.1. Новая система основных понятий и показателей интенсивности промышленного рыболовства

Лов, промысел и рыболовство как три основных области промышленного рыболовства можно описать системой понятий и показателей. Существующий перечень понятий и показателей не всегда учитывает деление промышленного рыболовства на три области. Рассмотрим с учетом этого основные понятия и показатели лова, промысла и рыболовства для оценки интенсивности добычи рыбы, при этом сначала дадим их определение, а затем рассмотрим подробнее.

Для оценки интенсивности добычи рыбы применяют такие понятия и показатели, как интенсивность лова, интенсивность промысла, интенсивность рыболовства, интенсивность вылова, коэффициент мгновенной промысловой смертности, коэффициент промысловой убыли, различные понятия промыслового усилия и т.д. В одно и то же понятие часто вкладывают различный смысл (Засосов, 1970; Трещев, 1974).

Для унификации понятий интенсивности полезно различать две формы влияния интенсивности добычи рыбы на запасы - интенсивность воздействия на запасы и интенсивность использования (эксплуатации) запасов.

Интенсивность воздействия на запасы не увязывают с выловом промысловых объектов и оценивают показателями промыслового усилия. Интенсивность использования (эксплуатации) запасов, напротив, увязывают с выловом и оценивают показателями использования запасов (Мельников, В.Н., Мельников А.В., 1998).

С учетом деления промышленного рыболовства на области будем различать интенсивность промышленного рыболовства, интенсивность рыболовства, интенсивность промысла и интенсивность лова.

Интенсивность промышленного рыболовства - качественное понятие,характеризующее интенсивность воздействия на запасы и использования запасов промысловых объектов.

Интенсивность рыболовства - мера использования запасов, равная улову за некоторый промежуток промыслового времени в пределах рассматриваемого промыслового участка или района,где располагается тот или иной запас.

Интенсивность промысла - мера воздействия на запас, равная промысловому усилию при работе группы судов.

Интенсивность лова - мера воздействия на запас, равная промысловому усилию при работе одного судна.

Промысловое усилие оценивают обловленным объемом (площадью) водоема или обловленным объемом (площадью) скопления, количеством судов, орудий лова, временем лова или промысла, судо-сутками лова, некоторыми характеристиками судов и орудий лова и т.д. Кроме того, применяют условное промысловое усилие с учетом улова стандартной промысловой единицы. Наилучшими в каждой области применения обычно считают понятия промыслового усилия, которые наиболее определенно и тесно связаны с показателем (например, уловом), мерой которого они служат.

Улов и промысловое усилие будем считать абсолютными показателями интенсивности промышленного рыболовства.

Кроме количественных показателей, характеризующих абсолютную интенсивность рыболовства, промысла или лова, не меньшее значение имеют относительные показатели обычно в виде отношения абсолютного показателя соответствующей интенсивности к другому показателю с таким же или иным физическим смыслом.

Относительная интенсивность рыболовства - отношение улова, принятого при оценке абсолютной интенсивности рыболовства, к величине запаса в начале рассматриваемого периода времени с учетом убыли от естественных причин (это понятие соответствует существующим терминам "коэффициент промысловой убыли" и "коэффициент эксплуатации промыслового стада").

Относительная условная интенсивность рыболовства- отношение улова,принятого при оценке абсолютной интенсивности рыболовства, к величине запаса в начале рассматриваемого периода времени без учета убыли от естественных причин (это понятие эквивалентно существующим понятиям "интенсивность вылова" и "условный коэффициент промысловой смертности ").

К относительным показателям интенсивности рыболовства принадлежит также мгновенный коэффициент промысловой смертности как показатель относительной скорости промысловой смертности.

Количественные понятия интенсивности рыболовства рассматривают, исходя из общей величины улова или с учетом отдельно рыб промысловых и непромысловых размеров. На раздельное определение показателей интенсивности рыболовства для рыб промысловых и непромысловых размеров необходимо обратить особое внимание в связи с различными требованиями к вылову рыб промысловых и непромысловых размеров.

Относительная интенсивность промысла - отношение обловленного группой судов объема (площади) водоема к объему (площади) промысловой части водоема.

Относительная интенсивность лова - отношение обловленного одним судном объема (площади) водоема к объему (площади) промысловой части водоема.

Понятия относительная интенсивность промысла и относительная интенсивность лова соответствуют известному понятию "интенсивность лова".

3.2. Общая характеристика основных понятий и показателей интенсивности промышленного рыболовства

Рассмотрим основные для промышленного рыболовства понятия и показатели интенсивности рыболовства, которые в п. 3.1 только упомянуты или не рассмотрены совершенно. Многие понятия и показатели интенсивности и эффективности промышленного рыболовства являются общими, поэтому они описаны совместно.

Зоной облова обычно называют часть водоема (объем или площадь), из которой рыбу улавливают с вероятностью, отличной от нуля. Использование такой, в принципе правильной оценки зоны облова затруднено из-за сложности ее практического определения, очень неодинакового вклада различных участков зоны в улов, трудностей определения средней плотности концентрации рыбы в зоне. Часто при такой оценке получают очень большие размеры зоны облова, и полезно рассматривать зоны облова, соответствующие вероятности улавливания 0,1, 0,2 и т.д. Особенно важна оценка зоны облова, которой отвечает улавливание рыбы с вероятностью 0,5.

Понятие зоны облова в рассматриваемой интерпретации не имеет смысла, когда охваченный орудием лова объем во много раз превышает размеры облавливаемого скопления, например, при кошельковом лове.

Из-за недостатков и сложности определения зоны облова водоема вместо этого понятия предложено использовать обловленный объем (обловленную площадь) как некоторый расчетный объем (расчетную площадь) водоема, из которого рыба преимущественно попадает в орудие лова.

По особенностям определения обловленного объема все способы лова делят на 5 групп, в зависимости от того, учитывают ли при этом размеры орудия лова, физических полей средств интенсификации лова, перемещение орудия лова и рыбы (Трещев, 1974; Мельников, 1991). Рассмотрим особенности определения обловленного объема с учетом необходимой точности определения обловленного объема.

Обловленный объем используют как меру интенсивности лова, меру затрат труда на добычу рыбы, а также при определении расчетной величины улова, производительности и эффективности лова. При оценке интенсивности лова точность определения обловленного объема сравнима с очень небольшой точностью выбора расчетного объема (площади) части или всего промыслового водоема. Требования к точности оценки обловленного объема как меры затраченного труда также невелики из-за специфики этого показателя. Наиболее высоки требования к точности оценки обловленного объема в последних случаях, причем эти требования зависят от корреляции между уловом и обловленным объемом. Несмотря на достаточно высокую в некоторых случаях корреляцию между уловом и обловленным объемом в узком диапазоне показателей лова, эта зависимость в более широком диапазоне не cтоль определенна и обычно нелинейна. Необходимо, кроме того, учитывать значительные колебания рабочих размеров орудий лова, зоны действия физических полей и скорости перемещения рыбы, а также ошибки их усреднения. Таким образом, и в этих случаях требования к оценке точности обловленного объема не слишком высоки, что облегчает определение показателей, через которые его вычисляют.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать