Эволюционное учение
p align="left"> Борьба за существование. Геометрическая прогрессия размножения и борьба за существование

Вы, наверное, слышали эту старинную задачу. "Индийский царь предложил изобретателю шахмат, чтобы он сам выбрал себе награду за создание этой игры. Тот попросил выдать ему за первую клетку шахматной доски одно пшеничное зерно, за вторую - два, за третью - еще в два раза больше и т.д. Сколько зерен должен получить изобретатель шахмат?"

 Сформулируем эту задачу по-другому. Пусть у нас есть одно зерно пшеницы. Посадим его в землю. Из него вырастет растение, в колосе которого будет всего 2 зерна. Высадим их вновь и так далее. Сколько растений у нас будет через 64 поколения? Ответ: 9 223 372 036 854 775 808 растений. Если каждое растение занимает площадь 1 кв. см., то общая площадь нашего пшеничного поля через 64 поколения почти вдвое превысит площадь Земного шара.

Давно известно, что все живые организмы размножаются в геометрической прогрессии. Как писал Дарвин: «Нет ни одного исключения из правила, по которому любое органическое существо численно возрастает естественным путем с такой большой скоростью, что не подвергайся оно истреблению, потомство одной пары очень скоро заняло бы всю землю. Считается, что из всех известных животных наименьшая воспроизводительная способность у слона, и я старался вычислить вероятную минимальную скорость естественного возрастания его численности; он начинает плодиться, всего вероятнее, в 13-летнем возрасте и плодится до 90 лет, принося за это время не более шести детенышей, а живет до ста лет; если это так, то по истечении 740--750 лет от одной пары получилось бы около 19 миллионов живых слонов».

Давно известно и то, что в каждом поколении огромное количество живых организмов гибнет на разных стадиях своего жизненного цикла. Из множества рожденных потомков только немногие доживают до вступления в цикл размножения. Не все дожившие участвуют в размножении. При оплодотворении каждая зигота получает только крохотный шанс на жизнь. За саму жизнь приходится бороться. Но этого мало. Мало просто выжить и благополучно состариться. Для того, чтобы оставить свой след в эволюции, нужно произвести потомство. Но и этого мало. Мало просто произвести потомство, нужно это потомство сохранить. За это тоже надо бороться.

Еще Дарвин предупреждал, что борьбу за существование не следует понимать, как примитивную драку. Он писал: «Я должен предупредить, что применяю этот термин в широком и метафорическом смысле, включая сюда зависимость одного существа от другого, а также включая (что еще важнее) не только жизнь особи, но и успех в оставлении потомства».

Принято выделять три формы борьбы за существование: борьбу за жизнь с абиотическими факторами (конституциональную борьбу), с представителями других видов (межвидовую борьбу) и с представителями своего собственного вида (внутривидовую борьбу). Это выделение весьма условно и, по существу, как мы увидим далее, эти формы тесно связаны друг с другом.

Конституциональная борьба за существование

Жизнь на Земле заполнила множество экологических ниш, которые очень сильно отличаются друг от друга. Даже организмы, принадлежащие к одному отряду, могут обитать в очень разных условиях. Например, грызуны обитают и далеко за Полярным кругом, и в раскаленных пустынях. Каждую из этих ниш занимает своя группа видов, уже прошедших через многие поколения борьбы за существования в этих условиях.

Эта борьба не прекращается ни на минуту. В каждом поколении рождаются особи, которые генетически отличаются друг от друга. Среди них выживают только те, кто наилучшим образом приспособлен к тем условиям, которые есть «здесь» и «сейчас» - в данной экологической нише и в данный момент времени. Но внешние условия непостоянны. Температура и влажность резко меняются в течение каждого года. В таких условиях преимущество в борьбе за жизнь получают особи, которые способны адаптироваться ко всему спектру этих изменений. Борьба за жизнь происходит каждую минуту, но победителями в этой борьбе оказывается те, кто продержится дольше, те, кто обладает наиболее надежными и хорошо скоординированными адаптациями.

Внешние условия непостоянны не только в течение года, они постепенно меняются год за годом. Меняется климат на всей Земле. Приходят и уходят ледниковые периоды. Те приспособления, которые обеспечивали победу в борьбе за жизнь вчера, могут оказаться неадекватными завтра. Физический мир вокруг живых организмов постоянно и непредсказуемо меняется. Вместе с ним меняются и правила борьбы за жизнь, меняются критерии приспособленности.

Межвидовая борьба за существование

Жизнь каждого организма зависит не только от абиотических условий, но и от множества других видов животных, растений, микроорганизмов, с которыми он, так или иначе, взаимодействует. Взаимоотношения типа хищник-жертва, паразит-хозяин играют важнейшую роль в жизни каждого организма.

Каждое усовершенствование любого вида в экосистеме ведет к ухудшению условий для других видов. Поэтому, для того, чтобы выжить, все виды, входящие в экосистему должны непрерывно эволюционировать. Эта закономерность получила название «принцип Красной Королевы» по имени героини книги Л. Кэрролла «Алиса в Зазеркалье». Крылатая фраза Красной Королевы «В этом мире нужно бежать из всех сил, только для того, чтобы остаться на месте» отражает самое существо борьбы за существование.

Большинство живых организмов погибает или оказывается исключенными из размножения не под действием физических факторов, а в результате действий других видов - паразитов, хищников, конкурентов. В межвидовой борьбе, как и в борьбе с абиотическими факторами, не бывает передышек. Она идет постоянно, день за днем, поколение за поколением и правила этой борьбы постоянно меняются. Однако эти изменения носят совсем иной характер, чем в борьбе с абиотическими факторами. Климат меняется постоянно и непредсказуемо, но он меняется не обязательно во вред живым организмам. Хищник всегда меняется во вред жертве, совершенствуя свои методы охоты. Жертва меняется во вред хищнику, совершенствуя способы защиты от него. Паразит меняется таким образом, чтобы использовать максимум ресурсов, которые он может черпать из организма хозяина, а хозяин развивает и усовершенствует все новые и новые средства борьбы с паразитом. Возникает ситуация замкнутого круга, когда усовершенствование жертвы в противостоянии хищнику влечет за собой усовершенствование способов охоты у хищников, которое в свою очередь влечет за собой усовершенствование жертвы, и так круг за кругом. Всем видам, входящим в экосистему приходится «бежать из всех сил, только для того, чтобы остаться на месте» - приходится постоянно меняться только для того, чтобы сохранить своем место в экосистеме.

Парадоксальная особенность межвидовой борьбы за существование состоит в том, что в ней бывают побежденные, но не бывает безусловных победителей. Если один из видов, включенных в экосистему, «проигрывает» в этой борьбе и вымирает, то жизнь видов-победителей от этого не становится легче. Если вид-хищник истребляет вид-жертву, он тем самым ставит под угрозу свое собственное существование. Если жертве удается «победить» хищника, став трудно достижимой для него добычей, то это оказывается Пирровой победой. За ней следует увеличение численности вида «победителя», быстрое истощение необходимых ему ресурсов, резкое увеличение численности паразитов и в результате сам «победитель» оказывается на грани вымирания. Вымирание тех или иных видов не снижает остроты межвидовой борьбы в биоценозе - на смену вымершим видам приходят их бывшие конкуренты.

Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют разные виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение.

Внутривидовая борьба за существование. Представьте себе ситуацию. Два зайца удирают от волка. Один из них говорит другому: «На что ты надеешься? Тебе все равно не удастся бежать быстрее волка». «А мне не нужно бежать быстрее волка, мне нужно бежать быстрее, чем ты: тогда волку достанешься ты, а не я, - отвечает другой. Зайцы соревнуются в скорости бега не с волками, а друг с другом. Волк, который гонится за зайцем, соревнуются не с ним, а с другим волком, который в другом лесу гонится за другим зайцем. Именно на внутривидовом уровне реализуется и межвидовая борьба, и борьба с абиотическими факторами.

Особи, принадлежащие к одному виду, отличаются друг от друга по множеству признаков. Среди множества особей данного вида выживают и размножаются только те, которые лучше, чем их соплеменники противостоят превратностям климата, спасаются от хищников, добывают пищу, защищаются от паразитов. Таким образом, борьба с абиотическими факторами и межвидовая борьба являются компонентами внутривидовой конкуренции. Однако конкуренция между особями одного вида этим не ограничивается.

 Тенденция каждого вида к неограниченному размножению вступает в противоречие с ограниченностью жизненных ресурсов: пищи, воды, укрытий, солнечного света и т.п. За все эти ресурсы возникает жесткая конкуренция между особями одного вида, поскольку все они имеют одинаковые потребности. Эта конкуренция может быть прямой и легко заметной для наблюдателя. Так, например, борьба за подходящие укрытия, за наиболее богатые кормовые участки, за самок может приводить к открытым конфликтам между представителями одного и того же вида. Однако чаще всего внутривидовая конкуренция оказывается непрямой и скрытой от наблюдения. Быстро растущие деревья затеняют медленно растущие и тем самым лишают их солнечного света - важнейшего и, казалось бы, неограниченного ресурса. Лев, съедая антилопу, тем самым отнимает пищу у другого льва. В дупле, уже занятом одной парой птиц, не может поселиться другая пара. Победители во внутривидовой борьбе, таким образом, получают преимущество в размножении и, соответственно, растет их генетический вклад в следующее поколение.

Мы редко наблюдаем в природе прямые конфликты между животными. В то же время многие натуралисты отмечают распространенность внутривидовой взаимопомощи, кооперации и даже самопожертвования в мире животных. Муравьи, пчелы, термиты совместно и согласованно возводят общественные сооружения. Птица ставит свою жизнь под угрозу, отвлекая хищника от гнезда с птенцами. Пчела самоубийственно атакует врага, который приближается к улью. Эти наблюдения иногда трактуют как свидетельства против дарвиновского тезиса о борьбе за существование. На самом деле внутривидовая взаимопомощь является весьма эффективным способом борьбы за существование, если мы, следуя Дарвину, понимаем ее «в широком и метафорическом смысле, включая не только жизнь особи, но и успех в оставлении потомства». Если мы внимательно проанализируем примеры «самопожертвования», мы обнаружим, что животные, как правило, жертвуют собой ради своих потомков или других близких родственников. Во внутривидовой кооперации почти всегда участвуют представители близко родственных групп. В результате, доля потомков и родственников особей, проявляющих взаимопомощь, оказываются более значительной в составе следующего поколения, чем доля потомков и родственников особей, не вступающих в кооперацию. Из поколения в поколение увеличивается генетический вклад особей, склонных к взаимопомощи.

Чем больше родство особей вовлеченных в кооперацию, кооперация тем более полное и согласованное взаимодействие особей мы наблюдаем. Наиболее яркие примеры кооперации и взаимопомощи наблюдаются в сообществах социальных насекомых (пчел, муравьев, термитов). Во всех этих случаях каждое сообщество состоит из ближайших родственников. Все население каждого улья, муравейника, термитника - это, как правило, дети одной единственной самки.

Таким образом, борьба за жизнь является следствием противоречия между тенденцией всех живых организмов к неограниченному размножению и ограниченностью жизненных ресурсов. Она может принимать разные формы, но результат ее всегда один - из множества рожденных особей каждого вида выживают и размножаются только те, которые лучше других приспособлены к тем условиям, которые существуют в популяции в каждый момент времени.

Естественный отбор, адаптация - результат действия отбора

Естественный отбор -- природный процесс, при котором из всех живых организмов сохраняются во времени только те, которые обладают качествами, способствующими успешному воспроизведению себе подобных. По представлениям СТЭ, естественный отбор является одним из важнейших факторов эволюции.

Механизм естественного отбора

Идею о том, что в живой природе действует механизм, подобный искусственному отбору, впервые высказали английские учёные Чарльз Дарвин и Альфред Уоллес. Суть их идеи состоит в том, что для появления удачных созданий, природе вовсе не обязательно понимать и анализировать ситуацию, а можно действовать наугад. Достаточно создавать широкий спектр разнообразных особей -- и, в конечном счёте, выживут наиболее приспособленные.

1. Сначала появляется особь с новыми, совершенно случайными, свойствами

2. Потом она оказывается или не оказывается способной оставить потомство, в зависимости от этих свойств

3. Наконец, если исход предыдущего этапа оказывается положительным, то она оставляет потомство и её потомки наследуют новоприобретённые свойства

В настоящее время, отчасти наивные взгляды самого Дарвина оказались частично переработаны. Так, Дарвин представлял, что изменения должны происходить очень плавно, а спектр изменчивости является непрерывным. Сегодня, однако, механизмы естественного отбора объясняются при помощи генетики, которая вносит некоторое своеобразие в эту картину. Мутации в генах, которые работают на первом этапе описанного выше процесса, являются существенно дискретными. Ясно, однако, что основная суть идеи Дарвина осталась без изменений.

Формы естественного отбора

Движущий отбор

Движущий отбор -- форма естественного отбора, когда условия среды способствуют определённому направлению изменения какого-либо признака или группы признаков. При этом иные возможности изменения признака подвергаются отрицательному отбору. В результате в популяции от поколения к поколению происходит сдвиг средней величины признака в определённом направлении. При этом давление движущего отбора должно отвечать приспособительным возможностям популяции и скорости мутационных изменений (в ином случае давление среды может привести к вымиранию).

Современным случаем движущего отбора является «индустриальный меланизм английских бабочек». «Индустриальный меланизм» представляет собой резкое повышение доли меланистических (имеющих тёмную окраску) особей в тех популяциях бабочек, которые обитают в промышленных районах. Из-за промышленного воздействия стволы деревьев значительно потемнели, а также погибли светлые лишайники, из-за чего светлые бабочки стали лучше видны для птиц, а тёмные -- хуже. В XX веке в ряде районов доля тёмноокрашенных бабочек достигла 95 %, в то время как впервые тёмная бабочка (Morfa carbonaria) была отловлена в 1848 году.

Движущий отбор осуществляется при изменении окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определенном направлении, перемещая соответственно и норму реакции. Например, при освоении почвы, как среды обитания у различных неродственных групп животных конечности превратились в роющие.

Стабилизирующий отбор

Стабилизирующий отбор -- форма естественного отбора, при котором действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака.

Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детенышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью.

Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорожденные с очень низким и очень высоким весом чаще погибают при рождении или в первые недели жизни, чем новорожденные со средним весом. Учет размера крыльев у птиц, погибших после бури, показал, что большинство из них имели слишком маленькие или слишком большие крылья. И в этом случае наиболее приспособленными оказались средние особи.

Дизруптивный отбор

Дизруптивный (разрывающий) отбор -- форма естественного отбора, при котором условия благоприятствуют двум или нескольким крайним вариантам (направлениям) изменчивости, но не благоприятствуют промежуточному, среднему состоянию признака. В результате может появиться несколько новых форм из одной исходной. Дизруптивный отбор способствует возникновению и поддержанию полиморфизма популяций, а в некоторых случаях может служить причиной видообразования.

Одна из возможных в природе ситуаций, в которой, вступает в действие дизруптивный отбор, -- когда полиморфная популяция занимает неоднородное местообитание. При этом разные формы приспосабливаются к различным экологическим нишам или субнишам.

Примером дизруптивного отбора является образование двух рас у погремка лугового на сенокосных лугах. В нормальных условиях сроки цветения и созревания семян у этого растения покрывают всё лето. Но на сенокосных лугах семена дают преимущественно те растения, которые успевают отцвести и созреть либо до периода покоса, либо цветут в конце лета, после покоса. В результате образуются две расы погремка -- ранне- и позднецветущая.

Дизруптивный отбор осуществлялся искусственно в экспериментах с дрозофилами. Отбор проводился по числу щетинок, оставлялись лишь особи с малым и большим количеством щетинок. В результате примерно с 30-го поколения две линии разошлись очень сильно, несмотря на то, что мухи продолжали скрещиваться между собой, осуществляя обмен генами. В ряде других экспериментов (с растениями) интенсивное скрещивание препятствовало эффективному действию дизруптивного отбора.

Отсекающий отбор

Отсекающий отбор -- форма естественного отбора. Его действие противоположно положительному отбору. Отсекающий отбор выбраковывает из популяции подавляющее большинство особей, несущих признаки, резко снижающие жизнеспособность при данных условиях среды. С помощью отсекающего отбора из популяции удаляются сильно вредные аллели. Также отсекающему отбору могут подвергаться особи с хромосомными перестройками и набором хромосом, резко нарушающими нормальную работу генетического аппарата.

Положительный отбор

Положительный отбор -- форма естественного отбора. Его действие противоположно отсекающему отбору. Положительный отбор увеличивает в популяции число особей, обладающих полезными признаками, повышающими жизнеспособность вида в целом. С помощью положительного отбора и отсекающего отбора совершается изменение видов (а не только посредством уничтожения ненужных особей, тогда любое развитие должно остановиться, но этого не происходит).

Среди примеров положительного отбора: чучело археоптерикса можно использовать как планер, а чучело ласточки или чайки нельзя. Но первые птицы летали лучше археоптерикса.

Другой пример положительного отбора -- появление хищников, превосходящих своими «умственными способностями» многих других теплокровных.

Или появление таких рептилий, как крокодилы, обладающих четырехкамерным сердцем и способных жить как на земле, так и в воде.

Палеонтолог Иван Ефремов утверждал, что человек прошел не только отбор на лучшую приспособленность к условиям окружающей среды, но и «отбор на социальность» -- выживали те сообщества, члены которых лучше поддерживали друг друга. Это еще один из примеров положительного отбора.

Частные направления естественного отбора

· Выживание наиболее приспособленных к условиям обитания видов и популяций, например видов, обладающих жабрами в воде, поскольку приспособленность позволяет выигрывать борьбу за выживание.

· Выживание физически здоровых организмов.

· Выживание физически сильнейших организмов, поскольку физическая борьба за ресурсы является неотъемлемой частью жизни. Имеет значение во внутривидовой борьбе.

· Выживание наиболее сексуально успешных организмов, поскольку половое размножение является доминирующим способом размножения. В данном случае в дело вступает половой отбор.

Однако все эти случаи являются частными, а главным остаётся успешное сохранение во времени. Поэтому иногда эти направления нарушаются ради следования главной цели.

Роль естественного отбора в эволюции

Ч. Дарвин полагал естественный отбор основополагающим фактором эволюции живого (селекционизм в биологии). Накопление в конце XIX - начале XX века сведений по генетике, в частности обнаружение дискретного характера наследования фенотипических признаков, подтолкнуло многих исследователей к пересмотру указанного тезиса Дарвина: в качестве чрезвычайно важных факторов эволюции стали рассматриваться мутации генотипа (мутационизм Г. де Фриза, сальтационизм Р. Гольдшмитда и др.). С другой стороны, открытие известных корреляций среди признаков родственных видов (закон гомологических рядов) Н. И. Вавилова привело к формулировке гипотез об эволюции на основе закономерностей, а не случайной изменчивости (номогенез Л. С. Берга, батмогенез Э. Д. Копа и др.). В 1920-1940-е г. г. в эволюционной биологии интерес к селекционистским теориям возродился благодаря синтезу классической генетики и теории естественного отбора.

Разработанная в результате этого синтетическая теория эволюции (СТЭ), часто называемая неодарвинизмом, опирается на количественный анализ частоты аллелей в популяциях, изменяющейся под влиянием естественного отбора.

Тем не менее, открытия последних десятилетий в различных областях научного знания -- от молекулярной биологии с её теорией нейтральных мутаций М. Кимуры и палеонтологии с её теорией прерывистого равновесия С. Дж. Гоулда и Н. Элдриджа (в которой вид понимается как относительно статическая фаза эволюционного процесса) до математики с её теорией бифуркаций и фазовых переходов -- свидетельствуют о недостаточности классической СТЭ для адекватного описания всех аспектов биологической эволюции. Дискуссия о роли различных факторов в эволюции продолжается и сегодня, и эволюционная биология подошла к необходимости своего очередного, третьего синтеза.

Возникновение адаптаций в результате естественного отбора

Адаптациями называются свойства и признаки организмов, которые обеспечивают приспособление к той среде, в которой эти организмы живут. Адаптацией также называют процесс возникновения приспособлений. Выше мы рассмотрели, как некоторые адаптации возникают в результате естественного отбора. Популяции березовой пяденицы приспособились к изменившимся внешним условиям благодаря накоплению мутаций темной окраски. В популяциях человека, населяющих малярийные районы, адаптация возникла благодаря распространению мутации серповидно-клеточной анемии. И в том, и в другом случае, адаптация достигается за счет действия естественного отбора.

При этом материалом для отбора служит наследственная изменчивость, накопленная в популяциях. Поскольку разные популяции отличаются друг от друга по набору накопленных мутаций, то к одним и тем же факторам внешней среды они приспосабливаются по-разному. Так, африканские популяции адаптировались к жизни в малярийных районах за счет накопления мутаций серповидно-клеточной анемии HbS, а в популяциях, населяющих юго-восточную Азию устойчивость к малярии сформировалась на основе накопления ряда других мутаций, которые в гомозиготном состоянии также вызывают болезни крови, а в гетерозиготном - обеспечивают защиту от малярии.

Эти примеры иллюстрируют роль естественного отбора в формировании адаптаций. Нужно, однако, ясно понимать, что это - частные случаи относительно простых адаптаций, возникающих за счет селективного размножения носителей единичных «полезных» мутаций. Маловероятно, что большинство адаптаций возникло таким путем.

Покровительственная, предостерегающая и подражательная окраска. Рассмотрим, например, такие широко распространенные адаптации, как покровительственная, предостерегающая и подражательная окраска (мимикрия).  Покровительственная окраска позволяет животным становится незаметными, сливаясь с субстратом. Одни насекомые поразительно сходны с листьями деревьев, на которых они обитают, другие напоминают засохшие веточки или шипы на стволах деревьев. Эти морфологические адаптации дополняются поведенческими приспособлениями. Насекомые выбирают для укрытия именно те места, где они менее заметны.

Несъедобные насекомые и ядовитые животные - змеи и лягушки, имеют яркую, предостерегающую окраску. Хищник, раз столкнувшись с таким животным, надолго ассоциирует этот тип окраски с опасностью. Этим пользуются некоторые неядовитые животные. Они приобретают поразительное сходство с ядовитыми, и тем самым снижают опасность со стороны хищников. Уж имитирует окраску гадюки, муха подражает пчеле. Это явление называется мимикрией.

Как возникли все эти удивительные приспособления? Маловероятно, чтобы единичная мутация могла обеспечивать такое точное соответствие между крылом насекомого и живым листом, между мухой и пчелой. Невероятно, чтобы единственная мутация заставляла покровительственно окрашенное насекомое прятаться именно на тех листьях, на которые оно похоже. Очевидно, что такие приспособления как покровительственная и предостерегающая окраски и мимикрия возникали путем постепенного отбора всех тех мелких уклонений в форме тела, в распределении определенных пигментов, во врожденном поведении, которые существовали в популяциях предков этих животных. Одной из важнейших характеристик естественного отбора является его кумулятивность - его способность накапливать и усиливать эти уклонения в ряду поколений, слагая изменения отдельных генов и контролируемых ими систем организмов.

Самая интересная и трудная проблема - это начальные стадии возникновения адаптаций. Понятно, какие преимущества дает почти идеальное сходство богомола с сухим сучком. Но какие преимущества могли быть у его далекого предка, который лишь отдаленно напоминал сучок? Неужели хищники так глупы, что их можно так легко обмануть? Нет, хищники отнюдь не глупы, и естественные отбор из поколения в поколение «учит» их все лучше и лучше распознавать уловки их добычи. Даже идеальное сходство современного богомола с сучком не дает ему 100-процентной гарантии, что ни одна птица его никогда не заметит. Однако его шансы ускользнуть от хищника выше, чем у насекомого с менее совершенной покровительственной окраски. Точно также, у его далекого предка, лишь чуть-чуть похожего на сучок, шансы на жизнь были несколько выше, чем у его родственника вовсе на сучок не похожего. Конечно, птица, которая сидит рядом с ним, в ясный день легко его заметит. Но если день туманный, если птица не сидит рядом, а пролетает мимо и решает не тратить времени на то, что может быть богомолом, а может быть и сучком, тогда и минимальное сходство сохраняет жизнь носителю этого едва заметного сходства. Его потомки, которые унаследуют это минимальное сходство, будут более многочисленны. Их доля в популяции станет больше. Это осложнит жизнь птицам. Среди них станут более успешными те, кто точнее будет распознавать замаскированную добычу. Вступает в действие тот самый принцип Красной Королевы, который мы обсуждали в параграфе, посвященном борьбе за существование. Чтобы сохранить преимущество в борьбе за жизнь, достигнутое за счет минимального сходства, виду-жертве приходится меняться.

Естественный отбор подхватывает все те мельчайшие изменения, которые усиливают сходство в окраске и форме с субстратом, сходство между съедобным видом и тем несъедобным видом, которому он подражает. Следует учитывать, что разные виды хищников пользуются разными методами поиска добычи. Одни обращают внимание на форму, другие на окраску, одни обладают цветным зрением, другие нет. Поэтому естественный отбор автоматически усиливает, насколько это возможно, сходство между имитатором и моделью и приводит к тем изумительным адаптациям, которые мы наблюдаем в живой природе.

Возникновение сложных адаптаций. Многие адаптации производят впечатление тщательно продуманных и направленно спланированных устройств. Как такая сложнейшая структура как глаз человека могла возникнуть путем естественного отбора случайно возникавших мутаций?

Ученые предполагают, что эволюция глаза началась с небольших групп светочувствительных клеток на поверхности тела наших очень далеких предков, живших около 550 млн. лет назад. Способность различать свет и тьму была, безусловно, полезна для них, повышала их шансы на жизнь по сравнению с их абсолютно слепыми сородичами. Случайно возникшее искривление «зрительной» поверхности улучшило зрение, это позволяло определить направление на источник света. Возник глазной бокал. Вновь возникающие мутации могли вести к сужению и расширению отверстия глазного бокала. Сужение постепенно улучшало зрение - свет стал проходить через узкую диафрагму. Как видите, каждый шаг повышал приспособленность тех особей, которые менялись в «правильном» направлении. Светочувствительные клетки формировали сетчатку. Со временем в передней части глазного яблока сформировался хрусталик, выполняющий функцию линзы. Он возник, по-видимому, как прозрачная двухслойная структура, наполненная жидкостью.

Ученые попытались смоделировать этот процесс на компьютере. Они показали, что глаз, подобный сложному глазу моллюска, мог возникнуть из слоя фоточувствительных клеток при относительно мягком отборе всего за 364 000 поколений. Иными словами, животные, у которых смена поколений происходит каждый год, могли сформировать полностью развитый и оптически совершенный глаз в менее, чем за полмиллиона лет. Эта очень короткий срок для эволюции, если учесть что средний возраст вида у моллюсков равняется нескольким миллионам лет.

Все предполагаемые стадии эволюции глаза человека мы можем обнаружить среди ныне живущих животных. Эволюция глаза шла разными путями в разных типах животных. Благодаря естественному отбору независимо возникло множество разных форм глаза, и человеческий глаз - только один из них, причем не самый совершенный

Если мы внимательно рассмотрим конструкцию глаза человека и других позвоночных животных, мы обнаружим целый ряд странных несообразностей. Когда свет попадает в глаз человека он проходит через хрусталик и попадает на светочувствительные клетки сетчатки. Свет вынужден пробиваться через густую сеть капилляров и нейронов, чтобы попасть на фоторецепторный слой. Как это ни удивительно, но нервные окончания подходят к светочувствительным клеткам не сзади, а спереди! Более того, нервные окончания собираются в оптический нерв, который отходит от центра сетчатки, и создает тем самым слепое пятно. Чтобы компенсировать затенение фоторецепторов нейронами и капиллярами и избавится от слепого пятна, наш глаз постоянно движется, посылая в мозг серию разных проекций одного и того же изображения. Наш мозг производит сложнейшие операции, складывая эти изображения, вычитая тени, и вычисляя реальную картину. Всех этих сложностей можно было бы избежать, если бы нервные окончания подходили к нейронам не спереди, а сзади как, например, у осьминога.

Само несовершенство глаза позвоночных проливает свет на механизмы эволюции путем естественного отбора. Мы уже не раз говорили о том, что отбор всегда действует «здесь и сейчас». Он сортирует разные варианты уже существующих структур, выбирая и слагая вместе лучшие из них: лучшие «здесь и сейчас», безотносительно к тому, во что эти структуры могут превратиться в далеком будущем. Поэтому ключ к объяснению и совершенств и несовершенств современных структур следует искать в прошлом. Ученые считают, что все современные позвоночные произошли от животных подобных ланцетнику. У ланцетника светочувствительные нейроны располагаются на переднем конце нервной трубки. Перед ними расположены нервные и пигментные клетки, которые прикрывают фоторецепторы от света попадающего спереди. Ланцетник принимает световые сигналы, приходящие с боков его прозрачного тела. Можно думать, что у общего предка позвоночных глаз был устроен сходным образом. Затем эта плоская структура стала преобразовываться в глазной бокал. Передняя часть нервной трубки впячивалась внутрь, и нейроны, находившиеся впереди рецепторных клеток, оказались поверх них. Процесс развития глаза у эмбрионов современных позвоночных в известном смысле воспроизводит последовательность событий, происходивших в далеком прошлом.

Эволюция не создает новых конструкций «с чистого листа», она меняет (часто неузнаваемо меняет) старые конструкции, так чтобы каждый этап этих изменений был приспособительным. Любое изменение должно повышать приспособленность его носителей или, хотя бы, не снижать ее. Эта особенность эволюции ведет к неуклонному совершенствованию различных структур. Она же является причиной несовершенства многих адаптаций, странных несообразностей в строении живых организмов.

Следует помнить, однако, что все приспособления, сколь бы совершенны они ни были, носят относительный характер. Понятно, что развитие способности к полету не очень хорошо совмещается с возможностью быстро бегать. Поэтому птицы, обладающие наилучшими способностями к полету, -- плохие бегуны. Напротив, страусы, которые не способны летать, прекрасно бегают. Приспособление к определенным условиям может быть бесполезно или даже вредно при появлении новых условий. Однако условия обитания меняются постоянно и иногда очень резко. В этих случаях накопленные ранее адаптации могут затруднить формирование новых, что может вести к вымиранию больших групп организмов, как это случилось более 60--70 млн лет назад с некогда очень многочисленными и разнообразными динозаврами.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать