Анализ ошибок заочной математической школы
p align="left">Конкретизация предполагает возвращение мысли от общего и абстрактного к конкретному с целью раскрыть его содержание [2].

Обобщение - мысленное объединение предметов и явлений по их общим и существенным признакам [2].

Эти три процесса тесно взаимосвязаны между собой. Абстрагирование, как правило, происходит лишь после обобщения, когда объект абстрагирования выделен. Конкретизация - процесс, обратный к абстрагированию.

Обобщение можно определить, как переход от единичного к общему. Рассматриваются конкретные объекты класса. У этих объектов замечается выполнение определенного свойства, делается предположение, что для всех объектов класса это свойство будет выполняться. На самом деле есть определенная схожесть с аналогией, но есть и отличие: при обобщении мы можем с помощью абстрагирования работать с классом, как с одним объектом. Например, любое число, делящееся на 5 можно представить в виде 5k. Доказав какое-то свойство для этого объекта, мы тем самым докажем это свойство для всего класса. Обратное происходит при конкретизации: если свойство верно для всего класса, то для конкретного объекта этого класса свойство будет выполняться.

Рассмотрим ошибки, которые могут возникать при этих процессах.

Одна из распространенных ошибок - необоснованность обобщений. Свойство класса при этом просто замечается, но не доказывается, оно, как правило, проверяется лишь для нескольких элементов класса. Рассмотрим классический пример, принадлежащий Л. Эйлеру:

Пример О1: Верно ли, что при любом натуральном n
n2 + n +41 - простое число?

Доказательство: при n = 1: n2 + n + 41 = 43 - простое число;

при n = 2: n2 + n + 41 = 47 - простое число;

при n = 3: n2 + n + 41 = 53 - простое число;

при n = 4: n2 + n + 41 = 61 - простое число;

при n = 5: n2 + n + 41 = 71 - простое число;

и т. д. При остальных n выражение n2 + n + 41 также будет простым числом.

Обобщение в этом случае не только не обосновано, но и опровергается конкретным примером: при n = 41 имеем n2 + n + 41 = 412 + 41 + 41 = 41(41+2) = 4143.

В жизни обычно на основе проверки свойства у нескольких объектов класса делается вывод, что данное свойство выполнимо для всего класса в целом. Примерно так строилось большинство физических законов; на ограниченном числе опытов выводились биологические и химические закономерности. Конечно, обобщение - это неотъемлемая часть построения гипотез. Но именно гипотез, из которых лишь впоследствии вырастают логически обоснованные теории. Из рассмотренного выше примера видно, что проверенное даже на многих конкретных примерах утверждение (для натуральных чисел, меньших 41, оно выполняется) может оказаться ложным. Подобные ситуации и вынуждают приводить полные доказательства полученных обобщений, независимо от степени уверенности в справедливости данной гипотезы.

Ошибочность полученной с помощью обобщения гипотезы нередко бывает связана с нереферентностью неосознанно проведенной выборки рассмотренных для ее выдвижения объектов. Они в таких случаях обычно подбираются по принципу «что ближе лежит (или лучше знаем), то и берем». В результате предполагаемый ответ может оказаться неверным для объектов, которые "лежат дальше".

Рассмотрим конкретный пример.

Пример О2: Найдите множество всех решений неравенства x3 - x0 (х R).

Ответ: [0,+].

Анализ ошибки: Ученик просто подобрал ответ, подставляя в неравенство только целые числа. Поэтому-то промежуток (0,1) он также включил в ответ (ведь в нем нет ни одного целого числа, а 0 и 1 удовлетворяют неравенству). Изучив нецелые числа, ученики тем не менее стараются по возможности обходится без них. Такой разрыв между теоретическими знаниями и обыденным сознанием зачастую ведет к неверным выводам вроде сделанного выше. В данной ситуации лучше всего посоветовать ученику решить неравенство методом интервалов, сравнить полученный ответ с первым и попытаться понять, почему его первоначальная гипотеза оказалась неверной.

Решения, в которых доказательство свойства для всего класса необоснованно заменяется проверкой лишь для одного или нескольких конкретных объектов этого класса, вообще встречаются в работах школьников достаточно часто. Рассмотрим еще один пример.

Задача О3: Докажите, что сумма любых десяти подряд идущих нечётных чисел делится на 20.

Решение: 1 + 3 + 5 + 7 + … + 19 = 100, делится на 20. Остальные суммы тоже делятся на 20.

Анализ решения: Из того, что свойство выполняется для одной последовательности чисел, еще не следует выполнение свойства для любой другой последовательности. Например, почему 1333 + …+ 1351 делится на 20? От ученика требуются пояснения, которые бы доказывали свойство для всех последовательностей, а не проверка свойства на конкретном примере. Поэтому и оценка решения должна вестись прежде всего на основе того, проверяет ученик свойство для частных случаев или он проводит свои рассуждения для всего класса рассматриваемых объектов. В нашем случае видно, что ученик просто подсчитал сумму, никакой предпосылки для обобщения он не выделяет.

Рассмотрим пример, когда строгого доказательства нет, но все-таки его можно считать верным.

Задача О4: Число при делении на 5 дает остаток 2. Какой может быть остаток при делении на 10?

Решение: 2 = 50 + 2 = 100 + 2, 7 = 51 + 2 = 100 + 7, 12 = 52 + + 2 = 101 +2 и так далее, при увеличении числа на 5 никаких других остатков, кроме 2 и 7 не будет.

В этом случае более строгих пояснений не требуется, так как действия с оставшимися объектами достаточно ясны.

В отличие от обобщения, при конкретизации происходит переход от общего к частному: от понятия к объекту, который этим понятием характеризуется; от теоремы к применению этой теоремы. В связи с этим возникают ошибки следующего вида: 1) неточное понимание определения; 2) неправильное применение теоремы, свойства.

В понимание структуры определения входит:

1) понимание смысла определения (раскрытие содержания понятия).

2) понимание строения определения (родовой и видовой признаки).

3) знание условий, которым должно удовлетворять правильное определение (указываются только основные признаки, не должно быть “порочного круга”).

Ученики могут понимать определение более узко (множество объектов, подходящих под определение, меньше действительного) или более широко (множество объектов, подходящих под определение, шире действительного).

Примеры:

· по определению делимости 5 делится на 2, так как существует число 2,5 такое, что 5 = 22,5. Множество объектов шире действительного, так как оба множителя должны быть целыми числами.

· многие школьники четырехугольник понимают как выпуклый, понятия о существовании невыпуклого четырехугольника нет, так как в школьной практике ученики работают почти исключительно с выпуклыми фигурами. Множество объектов, удовлетворяющих определению, эже действительного.

Ученики в рассуждениях иногда используют предложения, которые к рассматриваемому объекту применять нельзя. Например:

Задача О5: Основание призмы имеет площадь S. Ее боковое ребро длиной k наклонено к основанию под углом . Найдите объем призмы.

Решение: Объем призмы равен произведению площади основания на длину бокового ребра, поэтому V = Sk.

Анализ ошибки: В данном случае ученик воспользовался формулой вычисления объема для прямой призмы. Для наклонной призмы эта формула не верна, следовательно, применять ее нельзя. Единственный способ искоренить ошибку - показать ученику наглядно, что его рассуждения противоречивы. Для этого возьмем прямую призму. Разделим ее на две равные части так, как показано на рисунке. Составим из этих частей наклонную призму. Понятно, что их объемы должны быть равны. Если же действовать подобно ученику при вычислении объемов, то объем наклонной призмы будет больше, чем объем прямой призмы.

§2. Ошибки школьников ВЗМШ и их анализ.

Эта часть основана на конкретных работах учащихся ВЗМШ. Здесь мы выделили типичные ошибки, которые допускаются школьниками при выполнении заданий по пособиям [8] - [10], входящих в программу 8 класса Кировского отделения ВЗМШ. Анализ причины и соответствующие комментарии по ее исправлению, приведенные ниже по каждой из задач, могут быть использованы проверяющими при рецензировании работ учащихся. Кроме того, анализ причин основан на классификации ошибок, которая нами уже рассмотрена в §1. На ее основе мы и будем составлять соответствующие комментарии по задачам. Номера всех задач совпадают с их номерами в пособиях [8] - [10], которые приложены к настоящей работе.

Комбинаторика. Задания №1, №2.

Задача 1-7. AB содержит 25 элементов, AB - 10 элементов, B содержит 15 элементов. Найти количество элементов в A.

Рассуждения ученика: Так как множество B содержит 15 элементов, то множество A будет содержать 25 - 15 = 10 элементов.

Анализ ошибки: Следует заметить, что, выполняя задание “Комбинаторика”, большинство учеников впервые знакомятся с теорией множеств. В связи с этим они пытаются найти свойства, схожие со свойствами уже знакомых им объектов. Так операцию объединения двух множеств школьники часто связывают с операцией сложения двух чисел. Это вполне логично, ведь в свою очередь числа еще в младшем возрасте они изучали при помощи подручных предметов, к примеру, тех же счетных палочек, то есть, фактически, с помощью операций над множествами. При решении задачи ученик действовал с множествами, как с числами. Это было бы верно, если бы пересечение множеств было пустым, как при работе со счетными палочками. Но если это не так, то число элементов в объединении и сумма количеств элементов в каждом из множеств - это разные величины. Но ученик действовал по уже сформированному стереотипу, поэтому в ответе он получил не количество элементов множества A, а количество элементов, принадлежащих только A. Исходя из классификации, данной в §1, эту ошибку следует отнести к классу необоснованных аналогий. Причина ошибки состоит в том, что ребенок при решении задачи неосознанно работает с любыми двумя множествами как с непересекающимися. Проверяющему следует помочь ученику разобраться в понятиях пересечения и объединения, сделав упор на том, что отличает объединение множеств от сложения чисел. Это можно сделать, разобрав конкретную задачу. Целесообразно использовать круги Эйлера, так как графические иллюстрации помогают ученику лучше воспринимать информацию. Рассмотрим конкретный пример.

Задача. Множество A содержит 7 элементов, множество B - 10, объединение множеств A и B - 15.Сколько элементов содержит пересечение множеств A и B(c)?

Объединение множеств A и B можно разделить на три подмножества: 1) элементы, принадлежащие только множеству A; 2) элементы, принадлежащие пересечению множеств A и B; 3) элементы, принадлежащие только множеству B. Сложив количество элементов трех групп, мы получим количество элементов в объединении множеств A и B. Это видно и на кругах Эйлера. Обозначим за x - количество элементов пересечения. Тогда в первой группе 7 - x элементов, во второй x, в третьей 10 - x . В объединении (7 - x) + x + (10 - x) = 17 - x = 15 x = 2. Можно предложить ученику решить данную задачу в общем виде, заменив числа 7, 10 и 15 на a, b и с. Тем самым он получит выражение с = a + b - х, характеризующее количественное отношение двух множеств.

Задача 1-14. Записать формулами множества, заштрихованные на диаграммах (приведено несколько диаграмм, из которых мы рассмотрим одну).

Рассуждения ученика: Интересующее нас множество можно записать как AC + BC.

Анализ ошибки: Ученик отождествляет сложение с объединением. Надо убедить его, что между этими двумя операциями есть разница.

Не так важно, как называет ученик объединение (“объединение первого и второго множеств” или “прибавим к первому второе множество”, как-то иначе), важно то, что он подразумевает под ним, понимает ли он суть операции объединения. Поэтому нельзя считать, что ученик действовал при решении данной задачи неправильно. Надо указать, что при оперировании с числами употребляется знак “+”, а с множествами - “”. Разделение этих операций исключает из рассуждений ненужную путаницу.

Рассуждения ученика: Интересующее нас множество можно записать формулой AC + BC - ABC.

Анализ ошибки: ученик множествами оперирует, как числами. Он решает совсем другую задачу: сколько элементов содержит заштрихованное множество. Задача проверяющего - разъяснить разницу между множеством и количеством элементов в этом множестве. Ошибка напрямую связана с формальным знанием определений операций над множествами. По классификации она относится к разделу неправильное понимание определения (неверная конкретизация). Поэтому в данной ситуации проверяющему рекомендуется дать кроме приведенных в методическом пособии определений на диаграммах, словесные определения:

AB - множество всех элементов, которые принадлежат либо A либо B.

AB - множество всех элементов, которые принадлежат и A и B одновременно.

A\B - множество всех элементов, принадлежащих A, но не принадлежащие множеству B.

- множество всех элементов, не принадлежащих A.

Рекомендуется также сказать, что при объединении одинаковые объекты сливаются в один. Именно из таких объектов, которые содержатся в обоих множествах, и состоит пересечение. Пусть ученик сравнит определения с их графическими иллюстрациями. Сначала лучше научиться строить множества по формулам (их достаточно в пособии), а потом переходить к написанию формул по диаграммам.

Задача 2-6. Сколько существует семизначных чисел, цифры которых идут в убывающем порядке?

Рассуждения ученика: всё решение сводится к указанию того факта, что семизначных чисел столько же, сколько трехзначных с соответствующим убывающим порядком цифр. Отсутствует доказательство этого факта.

Анализ ошибки: Стоит упомянуть то, что перед данной задачей разобрана следующая : сколько существует восьмизначных чисел, цифры которых идут в убывающем порядке? Подробно рассмотрено решение, суть которого состоит в установлении взаимнооднозначного соответствия между восьмизначными и двузначными числами. Количество двузначных чисел нам уже известно. Авторы хотели тем самым дать образец решения. Хорошо выделили этапы доказательства: каждому двузначному сопоставлено ровно одно восьмизначное; каждому восьмизначному сопоставлено ровно одно двузначное; установлено взаимноооднозначное соответствие, следовательно, и тех и других чисел одинаковое число. Предполагалось, что школьники будут действовать аналогично. Действительно, многие ученики привели полностью обоснованное решение, но есть и те, кто не написал его, посчитав излишним приводить обоснования, аналогичные изложенным в методическом пособии. Необязательно требовать от ученика полностью приводить все доказательство, но в чем отличие рассуждений с семизначными числами от рассуждений с восьмизначными и почему действия будут аналогичными - ученик должен написать. Иначе это - необоснованная аналогия и решением не является. Одного ответа в данной задаче недостаточно, ученик должен понимать суть подсчета и уметь его осуществлять в подобных ситуациях. Ссылаться на соответствующий результат можно лишь после того, как показано, что решение при этом будет действительно аналогичное. Для убедительности надо привести задачу, в которой действия по аналогии приводят к неверному ответу. Можно привести задачу на поиск количества девяток в числах от 1 до 100. Рассуждаем следующим образом. От 1 до 10 - одна девятка, от 11 до 20 также - одна, получается в каждом десятке по одной девятке. Так как десятков десять, то девятка в числах от 1 до 100 встречается 10 раз. Все вроде бы верно, за исключением того, что в каждом числе от 90 до 99 включительно девятка встречается еще и в разряде десятков (в других десятках она встречается лишь в разряде единиц), поэтому аналогия на этот десяток неверная. В результате вместо верного результата 20 мы получили всего лишь 10.

На таких, очевидных с виду задачах, подобных задаче 2-6, и нужно развивать умение строго обосновывать каждый шаг в рассуждениях.

Задача 3-5. б) Четыре футбольных команды A, B, C и D, провели друг с другом несколько тренировочных матчей. Известно, что команда A участвовала в 6 матчах, команда B - в 5, C - в 7, D - в 10. Сколько всего состоялось матчей?

в) Три футбольных команды, A, B и C провели друг с другом несколько тренировочных матчей. Известно, что команда A участвовала в 6 матчах, команда B - в 7 матчах, а команда C - в 11 матчах. Сколько матчей сыграли друг с другом команды A и C?

Рассуждения ученика сводятся к рассмотрению конкретных графов, иллюстрирующих турнир. Подсчитав количество матчей, он дает ответ.

Анализ ошибки: Нет гарантий, что при построении другого графа ответ будет таким же. Это необоснованное обобщение в многих случаях приводит к неполному ответу. Приведем конкретный пример.

Возьмем 4 команды. A сыграла одну игру, B - две, C - три, D - две. Сколько игр сыграли между собой команды B и C? Понятно, что ответ неоднозначен. Может быть две игры, может быть одна.

Пусть теперь ученик докажет, что в его задаче такая ситуация не возникнет. Это подтолкнет его к рассуждениям в общем виде, и не стоит на этом этапе писать подсказки, которые лишают ученика возможности самостоятельного решения задачи. Ученик должен сам дойти до сути, в этом состоит один из главных принципов обучения в ВЗМШ.

Задача 3-6. Можно ли устроить такой турнир, чтобы в нем:

Страницы: 1, 2, 3



Реклама
В соцсетях