Изучение вопросов биотехнологии в курсе химии средней школы
p align="left">Участвуют свыше 190 микроорганизмов.

Стадии:

I. Белки аминокислоты

Липиды ВЖК и глицерин

Полисахариды моносахара

II.

H2 + СО2 + НЖК(СН3СООН) + низшие спирты

(в основном)

III. Образование метана: (1) 4H2 + СО2 = СН4 + 2Н2О…

(2) 4СН3ОН = 3СН4 + СО2 + 2Н2О

(3) СН3СООН = СН4 + СО2

90-95% используемого углерода превращается в метан, остальное в биомассу. Температура процесса 30-60?С; рН ~ 7. Основное преимущество биогаза - возобновляемый и экологически чистый источник энергии.

4. Вывод

Итак, что же мы сегодня изучили? Какую роль, по вашему мнению, может сыграть технология биометаногенеза в ближайшем будущем в свете дефицита энергоносителей?

УРОК №3 по теме «Бактериальное выщелачивание»

Задачи:

1. Образовательная: расширить сведения учащихся о переработке отходов на примере использования промышленных отвалов. Рассмотрение основных процессов микробного выщелачивания. Промышленное использование на примере переработки медных отвалов.

2. Развивающая: а) развитие познавательного интереса в процессе знакомства с материалом;

б) формирование логического мышления в ходе дедуктивного изложения материала;

в) формирование умений и навыков умственного и практического труда.

3. Воспитательная: а) в целях формирования диалектического мировоззрения показать, что, при всей необычности процессов микробного выщелачивания, они закономерно вписываются во всеобщую биотрансформацию неорганических веществ;

б) «прививание» экологического мировоззрения.

Ход урока:

1. Организация класса

Какие виды очистки сточных вод вы можете назвать? Как вы понимаете понятие биометаногенез?

2. Актуализация знаний

Еще за 1000 лет до н.э. финикийцы извлекали медь из рудничных вод. Валлийцы (Британские острова) в 17 веке описали аналогичный процесс. Сегодня мы попытаемся разобраться в секрете древних металлургов. Тема урока: «Бактериальное выщелачивание».

3. Изучение нового материала

1947 г. - Колмер и Хинкл выделили из шахтных вод бактерию Thiobacillus ferrooxydans. Попытайтесь перевести название на русский язык («Серобацилла железоокислительная»).

И действительно этот вид осуществляет процесс:

Fe2+ Fe3+, что соответствует окислению железа.

Данный вид бактерий относиться к группе хемосинтезирующих автотрофов (вспомните, что это такое), открытых Виноградским в 1920-е годы. Позже были обнаружены Thiobacillus thiooxydans - организмы, живущие в среде при рН = 0,65, и Sulfolobus, «терпящие» до 85?С. Эти бактерии существуют за счет окисления серы.

T.ferrooxydans

4Fe2+ + O2 + 4H+ 4Fe3+ + 2H2O

Sulfolobus

S8 + 12O2 = 8 H2O 8H2SO4

T.thiooxydans

ZuS + 2O2 ZuSO4

T. ferro-/thiooxydans

4FeS2 + 15O2 + 2H2O 2Fe2 (SO4)3 + 2H2SO4

Обратите на последние два процесса особое внимание, так как данные процессы «растворения» минералов сфалерита (ZuS) и пирита (FeS2) идут в земной коре и могут быть использованы человеком как альтернатива

t

2ZuS + 3O2 = 2ZuO +2SO4, дающего много загрязнителей атмосферы.

Особый интерес для промышленности представляет перевод в раствор полудрагоценной меди:

Cu2S + 4Fe3+ = 2Cu2+ + 4Fe2+ + S

T.ferrooxydans Sulfolobus H2SO4

Данный процесс позволяет перерабатывать бедные руды и отвалы с содержанием меди 0,4% (w).

Возможные схемы проведения

I. р-р H2SO4

(рН=2)

сбор продукта

II. р-р H2SO4 откачка

О2 продукта

III. Чановое выщелачивание (меньше потерь)

Продукт: р-р, содержащий 0,75 - 2,2 г/л меди:

Cu2+ + Fe = Cu + Fe2+ (можно показать меднение гвоздя в растворе медного купороса)

Образующийся раствор Fe2+ снова направляют в отвал.

· Проблемы:

1) Бактерии живут только в кислой среде. Что будет происходить при контакте выщелачивающего раствора с известковыми породами?

2) Потери раствора и возможное смешивание с грунтовыми водами.

3) Разогревание породы при «работе» бактерий (зафиксировано до 80?С) и как следствие стерилизация.

4) Инженерные проблемы введения кислоты и воздуха в породу.

· Перспективы:

1) Удаление серы из каменного угля. Подумайте, как это можно сделать.

2) Извлечение металлов из морской воды (Au) - привлечение ГМО.

4. Вывод

Итак, при желании человек может применять природосберегающие технологии даже при разработке медных, и не только, руд.

УРОК №4 по теме «Основы получения БАВ. Производство кормового белка»

Задачи:

1. Образовательная: изучение основных механизмов интенсификации процессов получения продуктов клеточного метаболизма. Производство кормового белка как предшественник управляемого биосинтеза БАВ.

2. Развивающая: а) развитие познавательного интереса учащихся;

б) формирование логического мышления в ходе изучения механизмов интенсификации процессов получения продуктов клеточного метаболизма;

в) формирование умений и навыков умственного и практического труда.

3. Воспитательная: а) в целях формирования диалектического мировоззрения показать возможность воздействия человека на процессы клеточного метаболизма;

б) воспитание мотивации к обучению.

Ход урока:

1. Организация класса

Напишите уравнения химических процессов лежащих в основе микробиологического выщелачивания медных отвалов, руд, содержащих пирит.

2. Актуализация знаний

Всем вам хорошо известны витаминные препараты, продающиеся повсеместно в аптеках. Антибиотики как средство от многих возбудителей заболеваний прочно вошли в нашу жизнь. Встает вопрос, какими методами получают в промышленности все эти соединения. Прежде, чем говорить о получении, вспомним, что из себя представляет предмет нашего разговора.

3. Изучение нового материала

Витамины - группа низкомолекулярных природных органических соединений, абсолютно необходимых для гетеротрофных организмов (что это за организмы?). Автотрофные организмы обладают способностью к синтезу витаминов. (под запись)

Антибиотики - низкомолекулярные регуляторы обычно природного происхождения, способные подавлять рост живых клеток.

Итак, в процессе роста организмы вырабатывают различные низкомолекулярные (какие ещё вы знаете?) продукты (метаболиты). Они подразделяются на первичные (абсолютно необходимы) и вторичные (не требующиеся для выживания).

низкомолекулярные метаболиты

первичные

(структурные единицы биополимеров, витамины, органические кислоты)

вторичные

(антибиотики, пигменты, токсины)

Таким образом, вторичные метаболиты повышают адаптационные возможности организмов.

масса организма I - первичные метаболиты

II - вторичные (синтезируются

на завершающей стадии роста)

время роста

К каким метаболитам вы отнесете аминокислоты, углеводы? Почему?

В норме обмен веществ в клетке осуществляется по принципу строжайшей экономии. Задача биотехнолога состоит в обеспечении сверхсинтеза одного из продуктов метаболизма, что обеспечивается следующими методами:

1) Изменение генетической программы организма:

а) селекция - направленный отбор организмов со скачкообразным изменением генома. Но для возникновения мутации интересующий нас ген должен удвоиться ~107 раз.

б) искусственный мутагенез - химический, УФ, радиационный.

2) Нарушение регуляторных систем организма: (на доске)

Ф Ф'

А Б С

блокировка фермента конечным метаболитом

Если Д (тоже блокирует Ф) - антиметаболит С, т.е. Д не включается в обмен, то на среде с Д выживают организмы с дефектами регуляции.

Сегодня мы рассмотрим также производство кормового белка как прообраз современного управляемого биосинтеза аминокислот, витаминов и антибиотиков.

В соответствии с нормами питания человек должен ежедневно получать с пищей 60-120 г. полноценного белка (содержащего все незаменимые аминокислоты). Незаменимые аминокислоты наиболее сбалансированы в белках семян сои, также риса и гороха. В белках зерна пшеницы мало лизина, метионина и изолейцина.

Особый интерес представляет использование микроорганизмов в качестве источника белка и витаминов:

1) использование разнообразных сред для культивации (вплоть до отходов производства);

2) высокая интенсивность роста

удвоение белковой массы: крупный рогатый скот - 5 лет,

свиньи - 4 месяца,

дрожжи - 1-6 часов;

3) повышенное содержание незаменимых аминокислот;

4) относительная простота влияния на процессы синтеза.

Дрожжевые клетки способны использовать жидкие фракции углеводородов нефти (10-30?С). В России первый завод по производству кормовых дрожжей из жидких парафинов нефти вступил в действие в 1971 году. При выращивании в среду добавляют также минеральные соли, витамины и воду. Полученная высушенная дрожжевая масса гранулируется и используется как белково-витаминный концентрат (БВК), содержащий до 60% белковых веществ.

Хорошим субстратом для выращивания кормовых дрожжей является молочная сыворотка - отход при переработке молока, а также низшие спирты. Хороший резерв пищевого белка и витаминов - остаточные пивные дрожжи. Организм человека усваивает свыше 90% питательных веществ, содержащихся в них.

Известно также более 30 видов бактерий, которые могут быть применены в качестве источника полноценного белка. Например, водородоокисляющие бактерии способны накапливать в клетках до 80% сырого протеина (среда 75% Н2, 20% О2, 5% СО2).

Используются также одноклеточные водоросли (Chlorella, Seenedesmus). Обычно их выращивают в естественных условиях южных регионов в бассейнах открытого типа (70 т/га в год).

Микопротеин - белок грибного происхождения. Среда культивации - глюкозный сироп (гидролизат кукурузного крахмала).

4. Заключение

Итак, острота проблемы глобального перенаселения, сокращение с/х площадей в результате роста городов и деградации земель выводит нас на новый виток развития биотехнологии, а именно, крупномасштабное использование микроорганизмов для наработки белково-витаминной продукции.

УРОК №5 по теме «Производство аминокислот, витаминов и антибиотиков»

Задачи:

1. Образовательная: изучить примеры некоторых производств аминокислот, витаминов и антибиотиков. Другие промышленно важные процессы эры управляемого биосинтеза: производство лимонной и молочной кислот.

2. Развивающая: а) развитие познавательного интереса учащихся в процессе ознакомления с материалом;

б) формирование логического мышления;

в) формирование умений и навыков умственного и практического труда.

3. Воспитательная: а) в целях формирования диалектического мировоззрения показать использование человеком природных систем для получения некоторых БАВ;

б) воспитание мотивации к обучению в связи с важностью биотехнологических методов в современной химической промышленности.

Ход урока:

1. Организация класса

Какие компоненты используются при получении БВК?

2. Актуализация знаний

На предыдущем уроке мы познакомились с возможными путями обеспечения сверхсинтеза одного их продуктов метаболизма (какими?), а сегодня попытаемся рассмотреть конкретные производства.

3. Изучение нового материала

I. Производство аминокислот

Среди соединений, полученных биотехнологическими методами, аминокислоты занимают первое место по объему производства (500 тыс. т/год).

Белковые аминокислоты можно получить:

1) гидролизом природного белоксодержащего сырья, но кислотное воздействие разрушает некоторые аминокислоты;

2) химическим синтезом, в ходе которого получается трудноразделимая смесь целевого продукта и его аналогов;

3) микробиологическим синтезом, который обеспечивается возобновляемым сырьем и характеризуется строгостью чистоты получаемого продукта. Более 60% производимых аминокислот получают именно этим методом.

Промышленное производство аминокислот стало возможным после открытия способности некоторых микроорганизмов выделять в культурную среду значительные количества какой-либо аминокислоты (1955). Corynebacterium glutamicum был способен, кроме того, к сверхсинтезу глутамина, и в 1956 году этот микроорганизм был использован при организации первого в мире производства глутаминовой кислоты (НООС-СН2-СН2-СН(NH2) COOH). Сейчас на глутамат натрия приходится 300 тыс. т/год, т.е. 60% производства аминокислот. Японцы называют глутамат натрия «солью вкуса», т.е. он значительно продлевает вкусовые ощущения.

Лизина производится 100 тыс. т/год. Данная аминокислота H2N(CH2)4CH(NH2) COOH - незаменимый компонент питания с/х животных. В клетках микроорганизмов лизин служит конечным продуктом разветвлённого метаболического пути, и эффекта накопления в среде целевой аминокислоты добиваются путем блокирования процессов, ведущих к синтезу побочных продуктов. Получаемые мутанты дефектны по ферменту разветвления метаболического пути, в результате чего накапливается только лизин. В качестве питательной среды используют молочную сыворотку или гидролизаты крахмала.

Некоторые аминокислоты синтезируют из предшественников, полученных химически и модифицированных ферментной системой организма (триптофан получают из антраниловой кислоты).

II. Производство витаминов

В настоящее время микробиологически синтезируют лишь особо сложные по строению витамины (В2, В12, ?-каротин, D). Остальные либо синтезируют химическим путем, либо выделяют из природных источников.

Витамин В2 (рибофлавин) вплоть до 30-х годов 20 века выделяли из природного сырья (1г из 1т моркови и 6г из 1т печени трески). В 1935 году был обнаружен активный продуцент рибофлавина - гриб Eremothecium, способный давать с 1т питательной среды 25 кг витамина. Отбор мутантов ведут по устойчивости к аналогу витамина В2.

Витамина В12 из 1т печени трески можно было выделить лишь 15 мг. В настоящее время витамин В12 синтезируется только микробиологическим путем с использованием актиномицетов и одноклеточных водорослей.

?-каротин можно выделить из ряда растительных объектов: 1т моркови содержит 0,06 мг витамина, в то время как биомасса гриба Blaneslea накапливает ?-каротин в количестве 8 мг/г.

III. Получение органических кислот

Объем мирового производства лимонной кислоты НООССН2С(ОН) (СООН) СН2СООН - 400 тыс. т/год. Данное производство относится к старейшим микробиологическим процессам: 1893 г. - год основания. Используют культуру гриба Aspergillus niger. Условиями высокого выхода лимонной кислоты является хорошая аэрация и дефицит фосфата в среде.

Одновременно с лимонной было налажено аналогичное производство молочной кислоты при участии молочнокислых бактерий Lactobacillus.

IV. Получение антибиотиков

Вспомните, что такое антибиотики? Думаю, важность получения соединений данной группы нет необходимости доказывать.

В 1940 году было известно всего 6 антибиотиков, а в настоящее время описано свыше 12 000 соединений, из которых в клинике используется около 200 (остальные токсичны).

Биосинтез антибиотиков осуществляется:

1) добавлением в питательную среду подходящего предшественника (фенилуксусная кислота стимулирует биосинтез бензилпенициллина);

2) использованием блокированных мутантов, у которых отсутствует определенное звено в цепи реакций, ведущих к синтезу антибиотика. Следовательно, можно получить аналоги антибиотиков и модифицировать их химически (бензилпенициллин, ампицилин).

4. Вывод

Пока человек лишь приближается к моделированию природных биохимических процессов, а пока изыскивает новые пути использования существующих.

УРОК №6 по теме «Применение ферментов»

Задачи:

1. Образовательная: знакомство с иммобилизованными ферментами. Промышленное применение иммобилизованных ферментов.

2. Развивающая: а) развитие познавательного интереса;

б) формирование логического мышления в ходе знакомства с методами иммобилизации ферментов;

в) формирование умений и навыков умственного и практического труда.

3. Воспитательная: а) в целях формирования диалектического мировоззрения показать использование катализаторов белковой природы;

б) воспитание мотивации к обучению при акцентировании на современности и важности данной методики работы с ферментными препаратами.

Ход урока:

1. Организация класса

Какими способами можно получить белковые аминокислоты? Попытайтесь написать реакцию гидролиза белка в общем виде.

2. Актуализация знаний

Всем хорошо известно, что в морской воде много растворенного кислорода, но, тем не менее, его использование затруднено, и при погружении приходится использовать дополнительные источники кислорода. А что, если гемоглобин, выделенный из крови, использовать в качестве посредника между морской водой и газовой средой дыхательного аппарата?! Более того, модель «гемогубки» уже предложена и, возможно, в ближайшем будущем будут сконструированы эффективные искусственные жабры. Сегодня на уроке мы попытаемся разобраться, каким образом можно «направить в нужное русло» тот или иной фермент.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать