Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа
p align="left">В учебнике же [11] как таковых определений синуса и косинуса нет, а вместо них присутствует фраза «… нетрудно понять, что ордината точки Р - это синус угла , а абсцисса этой точки - косинус угла », а затем приведено геометрическое подтверждение этого факта. Благодаря этому, у учащихся не возникает недоумения по поводу того, почему раньше синусом называли отношение длин катета и гипотенузы, а сейчас откуда-то выплыли какие-то абсциссы и ординаты. В учебнике [16] этот факт тоже довольно неплохо пояснен, но с опозданием в 3 параграфа, а в учебнике [3] пояснение отсутствует вовсе.

Тангенс же во всех учебниках, за исключением [11], определяется как отношение синуса к косинусу. В учебнике же [11] опять не дается четкого определения тангенса, а приводится лишь геометрическая интерпретация «ордината точки пересечения прямой ОР (Р - точка на единичной окружности) и касательной к окружности в точке (1;0) равна тангенсу угла ».

Определения котангенса авторы дают аналогично определениям тангенса за исключением учебника [2], в котором котангенс почему-то совсем игнорируется и не рассматривается как функция.

Остановимся подробнее на вопросах исследования и построения графиков тригонометрических функций.

В учебнике [16] процесс построения графика и исследования функции происходит следующим образом: уже известные ребятам факты обобщаются и формулируются как свойства функций. Сначала рассматриваются такие свойства функции y=sin(x), как область определения, множество значений, нечетность, возрастание на отрезке [0;/2] и убывание на отрезке [/2; 3/2], ограниченность сверху и снизу, наибольшее и наименьшее значение. Затем составляется таблица основных значений функции на отрезке [0;], строятся соответствующие точки и плавно соединяются.

Используя свойство нечетности синуса, полученный график отображается относительно начала координат на отрезок [-;0], используя свойство периодичности, график функции достраивается на остальных отрезках длиной 2. С опорой на построенный график, выделяется свойство непрерывности функции синус и область ее значений. Исследование функции cos х и построение ее графика как и во всех остальных учебниках основывается на том факте, что cos х = sin (х+/2).

В учебнике [3] построение синусоиды происходит при помощи единичной окружности переносом значения синуса к соответствующим точкам оси ОХ. А затем, после построения графика, еще раз происходит возвращение к свойствам и к тому, как они проявляются на графике. В учебнике [11] синусоида строится подобно тому, как она строится в [3], но все свойства функций за исключением области определения и множества значений рассматриваются в следующей теме «Основные свойства функций», а затем только переносятся на тригонометрические.

Отметим, что в учебниках [16] и [11] не обоснован тот факт, что областью определения функций sin и cos является множество всех действительных чисел. Конечно, этот факт достаточно очевиден, но тем не менее учебник пишется не для учителя, а для учеников, а «мера очевидности», как известно, у всех разная. Поэтому не стоит забывать об обосновании даже очевидных фактов, ведь это приучает ребят к столь необходимой при изучении математики логической четкости и аккуратности мысли.

Что касается области значений тригонометрический функций, то ни в одном из учебников нет четкого обоснования данного свойства. Все «попытки» обоснования этого свойства сводятся к рассмотрению двойных неравенств: -1 sin х 1 и -1 соs х 1, которые выполняются для всех значений х. Однако, отсюда совершенно не следует то, что в область значений данных функций входят все точки отрезка [-1;1].*

При обосновании свойств четности и нечетности тригонометрических функций доказательство тождества sin(-х) = -sin(х) сводится в основном к симметричности точек х и -х, которая также четко не обоснована ни в одном из учебников. ** более подробно эти вопросы изложены в параграфе 3

Монотонность же тригонометрических функций во всех учебниках, за исключением [11], иллюстрируется с помощью числовой окружности. В учебнике [11] в силу того, что тригонометрические преобразования изучаются перед тригонометрическими функциями, монотонность функции у= sin(х) обоснована более доказательно, но все же некоторые недочеты имеются.*

При изучении свойства периодичности авторы учебников [16], [2] и [11] дают следующее определение периодичности: «Функция f(x) называется периодической, если существует такое число Т0, что для любого х из области определения данной функции выполняется равенство f(x-T)=f(x)=f(x+T). Число Т называется периодом функции f(x)». В учебнике [3] равенство f(x-T)=f(x)=f(x+T) заменяется менее сильным равенством f(x)=f(x+T), но зато снимаются ограничения на х. Здесь х может быть любым, а не только из области определения. Заметим, что для функций, областью определения которых является все множество R, эти два определения будут не только равносильными, но и одинаково корректными (см. [23] (стр. 108 №145)). Но если применять второе определение к функции у=sinх, то у учащихся может вызвать затруднения сравнение значений данной функции в точках, например, - и . Поэтому более целесообразным является использование первого определения.

Проанализируем теперь системы задач, направленные на отработку умений и навыков, которые предусмотрены программой по теме «Тригонометрические функции».

Система задач в учебнике [3] содержит в себе задания на перевод из градусной меры в радианную и наоборот, построение углов на единичной окружности, движение точки по окружности, определение тригонометрических функций, исследование и построение графиков комбинаций тригонометрических функций, нахождение значений тригонометрических функций в некоторых точках и их знаков на некоторых промежутках, нахождение производных комбинаций тригонометрических функций и вычисление приближенных значений тригонометрических функций.

В учебниках [2] и [11] работе со свойствами комбинаций тригонометрических функций уделяется уже гораздо большее внимание, чем в учебнике [3], присутствуют задачи теоретического плана, например, «Докажите, что если функция y=f(x) является периодической, то и y=k*f(x)+b тоже периодическая», не остаются без практической отработки и гармонические колебания. В учебнике [2] присутствует еще одна особенность: здесь подобрано большое количество задач с ограничением на переменную х, что помогает учащимся в осознании того факта, что «не всякие свойства функции, рассматриваемой на множестве всех действительных чисел, сохраняются при наложении ограничений на область определения этой функции».

Наиболее же полноценной из всех является система задач в учебнике [16]. Здесь, кроме всего уже вышеперечисленного, большое внимание уделено отработке навыков и умений работы с числовой окружностью, присутствуют задачи для работы с тригонометрическими функциями как числового, так и углового аргументов, используются функции, заданные кусочно, отрабатываются умения решать уравнения, содержащие тригонометрические функции, графическим методом.

Вообще, говоря о системе задач этих учебников, следует отметить некоторые недостатки учебника [3]. В идеале, решение каждой последующей задачи должно не только опираться на предыдущую, но и содержать какие-то дополнительные идеи. Здесь же не везде четко прослеживается система, да и по уровню сложности задачи не столь уж разнообразны.

Зато наличие отдельного задачника к учебнику [16] позволило дать в нем полноценную по объему систему упражнений, достаточную для работы в классе, для домашних заданий и повторения. Все задания дифференцированы по блокам, отдельно выделены даже устные и полуустные упражнения, что дает возможность более рационального использования учебного времени.

Таким образом, наиболее удачным учебным пособием в плане изучения темы «Тригонометрические функции» в курсе алгебры и начала анализа является учебно-методический комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит.

§ 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

В изучении тригонометрических функций в школе можно выделить два основных этапа:

ь Первоначальное знакомство с тригонометрическими функциями углового аргумента в курсе геометрии (8-9 класс).

ь Систематизация и расширение знаний о тригонометрических функциях в курсе алгебры и начал анализа (10-11 класс ).

На первом этапе не доказывается и не уточняется, что изучаемые зависимости являются функциями. Изменение синуса и косинуса при изменении угла доказываются на основе свойств наклонной. Эти понятия достаточно абстрактны для курса геометрии, поэтому усваиваются довольно плохо. Но еще большие трудности вызывает переход к аргументу, большему 900. Ведь мы определяли тригонометрические функции через отношение сторон прямоугольного треугольника, а, как известно, в прямоугольном треугольнике не может быть угла с градусной мерой, большей 900. Для объяснения этого факта уже на этом этапе приходится рассматривать окружность, и это является своеобразной пропедевтической работой для введения тригонометрических функций числового аргумента с помощью окружности в курсе алгебры и начал анализа.

На втором этапе происходит переход от углового аргумента к числовому. С самого начала курса мы должны рассматривать тригонометрические функции углов любой величины - значит предварительно нужно познакомить учеников с углом как с величиной, способной изменятся от - до +. В курсе геометрии такое понятие не фигурировало, следовательно, это необходимо восполнить на втором этапе. Таким образом, возникает необходимость введения числовой окружности, работу с которой целесообразно провести также на втором этапе.

В качестве пропедевтической работы для изучения модели числовой окружности желательно рассмотреть геометрические задачи на нахождение длины дуг четверти окружности данного радиуса, ее трети и половины. Обобщая полученные результаты, необходимо подвести учащихся к тому факту, что для дальнейшей работы выгоднее выбирать окружности именно единичного, а не произвольного радиуса.

В процессе работы с числовой окружностью у учащихся должны быть сформированы следующие умения:

- находить на числовой окружности точки, соответствующие заданным числам, выраженным в долях числа и выраженным не в долях числа ;

- составлять аналитические записи для дуг числовой окружности;

- определять принадлежность точки какой-либо координатной четверти;

- работать одновременно в двух системах координат - в криволинейной и прямоугольно-декартовой и осуществлять переход от одной системы координат к другой;

- находить координаты точек числовой окружности и отыскивать на числовой окружности точки по заданным координатам;

Для этого целесообразно рассматривать задания следующих типов:

1) Найти на числовой окружности точки /2, 9, 26/3, -5/4, -7/6…..

2) Найти на числовой окружности точки 1, 2, -7, 4.5, -31 ….

3) Определить, каким четвертям принадлежат точки 21/4, -37/6, 10, -95.

4) Отметить на числовой окружности точки t, удовлетворяющие неравенствам: а) /6+2к t 2/3+2к, к

б) -/3+2к t 3/4+2к, к

5) Найти декартовы координаты точек, соответствующих числам /4, -3/2, 23/6, -13/3…..

6) Найти положительные и отрицательные числа, которым соответствуют точки с координатами (1/2;3/2), (-2/2; 2/2); (3/2; -1/2), (-1,0)….

7) Найти на числовой окружности точки с ординатами (абсциссами) равными -3/2, 1/2, -2/2, 0, -1, абсциссы (ординаты) которых отрицательны, и записать, каким числам они соответствуют.

8) Найти на числовой окружности точки с ординатой (абсциссой) > -2/2 и записать, каким числам они соответствуют.

В процессе работы с числовой окружностью следует обратить внимание на следующие моменты.

В арсенале учителя должно находится как минимум два макета с числовыми окружностями. На первом из них отсчет ведется в положительном направлении с указанием расположения точек 0, /6, /4, /3, /2, 2/3…. , на втором - в отрицательном с указанием точек -0, -/6, -/4, -/3, -/2, -2/3…., причем второй макет желательно вывесить после того, как учащиеся ответят или попытаются ответить на вопрос: «Что будет, если точка будет двигаться не положительном, а в отрицательном направлении?».

Эта мотивационная задача позволяет еще раз провести связь между числовой окружностью и числовой прямой. Ведь на числовой прямой можно было откладывать не только положительные, но и отрицательные значения, причем сколь угодно большие. На числовой окружности можно делать то же самое, но следует учитывать тот факт, что на прямой соответствие между точками и числами взаимно-однозначное, а на окружности у каждой точки бесконечно много имен, отличающихся друг от друга на 2к, где к.

Это главное отличие учащиеся должны четко понимать и осознавать. Для этого числовую окружность можно сравнить с колесом, а числовую прямую с бесконечной нитью, на которой отмечены точки. Наматывая нитку на колесо, предварительно совместив соответствующие нулевые точки, можно заметить, что точки, отличающиеся на 2, попадут в одно и тоже место на колесе, благодаря тому, что длина числовой окружности единичного радиуса составляет именно 2.

Больше всего проблем, связанных с неоднозначностью соответствия между точками и числами на окружности возникает при решении задач вида: «Найти на числовой окружности точки с ординатой (абсциссой) большей 3/2 и записать, каким числам они соответствуют».

Такие неравенства, характеризующие дугу, рекомендуется на начальном этапе составлять в два шага. На первом шаге составить так называемое «ядро» аналитической записи /3 < t < 2/3, и только на втором составить общую запись /3+2k < t < 2/3+2k, где к Z.

По этому поводу осмелюсь не согласиться с статьей [10], в который автор пишет, что уточнение «где к Z» можно опускать, записывая его только в парадных случаях - на контрольных или экзаменационных работах. В большинстве случаев это действительно можно делать совершенно безболезненно, но как быть, если при отборе корней уравнения или неравенства, или при наложении определенных ограничений на функцию, параметр к сможет принимать не все а, например, только положительные или только четные значения?

Учащиеся, привыкшие писать +2k, не задумываясь над тем, какие значения может принимать параметр к, и в этом случае напишут +2k, что автоматически сделает их решение неверным.

Это приведет и к недопониманию того факта, что, например, множества «4k, где к Z» и «2k, где к 2Z» совпадают. Это, в свою очередь, может породить затруднения при рассмотрении функций с периодом, равным 4. А ведь таким функциям уделяется немало времени при изучении темы «Тригонометрические функции».

Таким образом, нельзя оставлять недоработанными никакие, даже самые маленькие детали, ведь незначительные с виду недоработки, возникающие при изучении числовой окружности, в процессе изучения самих тригонометрических функций могут стать причиной возникновения больших пробелов в знаниях.

Теперь, когда мы научились работать с числовой окружностью как самостоятельным объектом, можно приступать к введению самих тригонометрических функций.

Не стоит забывать, что определения тригонометрических функций с помощью числовой окружности плохо укладываются в сознании ребят по одной простой причине: на первом этапе определения были даны в геометрической трактовке - как отношения сторон прямоугольного треугольника.

Из психологии известно: «если какое-нибудь важное понятие вводится в первый раз, то ассоциации, сопутствующие ему, врезаются в сознание учащегося чрезвычайно прочно. Последующие впечатления бывают слабее и не могут стереть того обличия, в котором это понятие явилось впервые». [5]

Несмотря на то, что мы уже использовали окружность для введения «новых» определений синуса и косинуса на этапе расширения множества значений, принимаемых углом необходимо еще раз провести взаимосвязь между прямоугольным треугольником и числовой окружностью.

Напомним, что в школьных учебниках этому факту почему-то не уделяется должного внимания (см. главу «Анализ изложения темы «Тригонометрические функции» в различных школьных учебниках»), поэтому учителю стоит обратить внимание на то, чтобы при введении тригонометрических функций на этом этапе были озвучены следующие моменты.

Рассмотрим числовую окружность единичного радиуса, расположенную в прямоугольно декартовых координатах. Рис.1

В положительном направлении от оси ОХ отложим угол такой, что 0 < < 900. Обозначим полученную на окружности точку как Р. Опустим из точки Р перпендикуляр на ось ОХ, получим точку М. Рассмотрим получившийся прямоугольный треугольник ОМР. Sin по определению равен отношению МР/ОР, но радиус окружности ОР равен единице, следовательно, Sin = МР. Аналогичным образом, cos = ОМ. Заметим, что длина ОМ - это абсцисса точки Р в прямоугольно-декартовой системе координат, а длина МР - ее ордината. Таким образом, синус и косинус угла определяются через ординату и абсциссу точки Р, что является более удобным при работе в прямоугольно-декартовой системе координат.

Работая с числовой окружностью, мы уже усвоили тот факт, что так как длина дуги единичной окружности легко выражается через центральный угол, на нее опирающийся, то точку Р, можно построить и другим способом - откладывая дугу заданной длины. А так как длина дуги - всегда действительное число, значит, от тригонометрических функций углового аргумента легко можно перейти к тригонометрическим функциям числового аргумента.

Сейчас вернемся к наложенным на угол ограничениям. Угол принадлежит промежутку от 00 до 900, а значит и длина дуги лежит между нулем и /2. Используя все ту же геометрическую интерпретацию, легко показать, что эти определения можно распространить и на любые углы и числа.

Понятия тангенса и котангенса можно вводить двояко: как отношение синуса к косинусу (косинуса к синусу) и как ординату (абсциссу) точки пересечения касательной к окружности в точке (1;0) ((0;1)) и прямой ОР.

Рис.2

Вообще говоря, определив функции синус и косинус, мы уже не нуждаемся в числовой окружности как средстве для введения понятий тангенса и котангенса. Но раз уж мы взялись работать с этой моделью, то неплохо бы показать, как определить функции тангенс и котангенс, используя только их геометрическое определения (заметим, что выражения «тангенс угла - это отношение синуса к косинусу » и « котангенс угла - это отношение косинуса к синусу » не являются определениями - это уже свойства).

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать